

取扱説明書

(取付けの説明を参照)

取扱説明書の翻訳

目次

1	一般事項	8
	1.1 この取扱説明書について	8
	1.2 記号の説明	8
	1.3 用語の定義 1	0
	1.3.1 アンクランプポジション1	0
	1.3.2 全クランプ予備ストローク1	0
	1.4 賠償責任の制限 1	0
	1.5 著作権 1	0
	1.6 同梱品 1	1
	1.7 スペア部品と付属品 1	1
	1.8 保証期間 1	2
2	安全1	3
	2.1 作業員の責任1	3
	2.2 操作員の要件 1	4
	2.3 用途に従う適切な使用 1	5
	2.4 作業員の安全装備 1	7
	2.5 特殊な危険 1	
	2.6 繊維強化プラスチック (FRP) 製品 2	
	2.7 その他の安全注意事項 2	
	2.8 ネジ2	
	2.9 機能性2	
	2.10 環境保護 2	
3	テクニカルデータ2	
	3.1 一般仕様2	
	3.2 性能指標2	
	3.3 バランス精度2	
	3.4 回転速度	
	3.5 クランプ力のグラフ 2	
	3.5.1 サイズ 26 2	
	3.5.2 サイズ 40 2	
	3.5.3 サイズ 52 3	
	3.5.4 サイズ 65 3	
	3.5.5 サイズ 80 3	
	3.5.6 サイズ 100	
	3.6 運転条件 3	
	3.7 型式の表示	
4	構造と機能3	3

	4.1	部品の図	以と概要説明	33
	4.2	必須付属	禹品	34
		4. 2. 1	スピンドルフランジ	34
		4. 2. 2	ドローチューブアダプター	34
		4. 2. 3	クランピングヘッド	34
		4.2.4	エンドストップ	34
		4. 2. 5	アライメントセット	34
	4.3	オプショ	ョンの付属品	34
		4. 3. 1	ジョーモジュール	34
		4. 3. 2	マグネットモジュール	35
		4. 3. 3	MANDO Adapt	35
		4. 3. 4	モールステーパー アダプター	35
		4. 3. 5	フェイスドライバー アダプター	35
		4.3.6	キリコ侵入防止リング	36
		4. 3. 7	キリコ侵入防止リング付きベースエンドストップ	36
		4.3.8	エンドストップシステム ヴァリオ フレックス	36
		4.3.9	エンドストップシステム ヴァリオ パート	36
		4. 3. 10	エンドストップシステム ヴァリオ クイック	37
	4.4	特殊工具	₹	37
		4.4.1	手動式コレット交換工具	37
		4.4.2	空圧式コレット交換工具	37
		4.4.3	刃先ガイド付きドライバービット	37
5	用途	と使用の	制限	38
	5. 1	使用		38
	5.2	使用の制	刊限	38
		5. 2. 1	用語	38
		5. 2. 2	制限値 1 (ワークの長さ)	41
		5. 2. 3	制限値 2 (ワークの質量)	41
		5. 2. 4	限界値 3(クランプ長さ)	42
		5. 2. 5	制限值 4 (力)	43
		5. 2. 6	計算例	55
		5. 2. 7	最大許容回転数	58
6	輸送	、梱包、	保管	59
	6. 1	安全な軸	俞送、梱包、保管	59
	6.2	梱包用記	己号	60
	6. 3	輸送点核	矣	60
	6.4	開梱おる	、び社内輸送	61
	6.5	梱包		61

	6.6	保管 6	32
	6.7	防錆処理 6	32
	6.8	再保管 6	32
7	取付	け	33
	7. 1	取付け時の安全性 6	
	7. 2	はじめに e	35
	7. 3	ネジ締め付けトルク 6	
	7.4	取付けのための機械の前準備 6	37
	7. 5	製品の取付け6	
		7.5.1 互換性の確認 6	
		7.5.2 製品の前準備	38
		7.5.3 ドローチューブアダプターの取り付け	70
		7.5.4 調節できないスピンドルフランジの取付け	71
		7.5.5 調節可能なスピンドルフランジの取付け	
		7.5.6 調整可能なコレットチャックの機能ユニットの取り付け 7	
		7.5.7 調整できないコレットチャックの機能ユニットの取り付け 7	
	7.6	クランプエレメントの取付け	32
	7. 7	換装部品の組付け8	34
		7.7.1 取付け方法:換装部品を直接締め付ける 8	35
		7.7.2 取付け方法: x 箇所で側面からクサビ式で固定する 8	35
		7.7.3 取付け方法: バヨネットで x 箇所を側面からクサビ式で固定す	る
		8	36
		7.7.4 取付け方法: 中心部にクサビ式で固定する 8	38
		7.7.5 取付方法: 半径方向に固定する 8	39
	7.8	テスト装置を使用したコレットチャックの調整) 1
8	試運	転) 2
	8.1	起動時の安全性) 2
	8.2	全ストロークのチェック) 4
	8.3	チェック 9	3 4
	8.4	ワーク 9	3 5
	8.5	衝突後の取り扱い	96
9	加工	完了後の作業	3 7
10	取り	外し	98
	10.1	取り外し時の安全性	98
	10.2	取り外しのための機械の前準備 10)()
	10.3	換装部品の取り外し 10)()
		10.3.1 取り外し方法:換装部品を直接緩める10)1
		10.3.2 取り外し方法: x 箇所の側面からのクサビを緩める 10)1

	10.3.3 取り外し方法: x 箇所で側面から固定されたバヨネットを緩め	る
		102
	10.3.4 取り外し方法: 中心軸を緩める	104
	10.3.5 取り付し方法: 半径方向の固定を解除する	105
	10.4 クランプエレメントの取り外し	106
	10.5 製品の取り外し	108
	10.5.1 機能ユニットの取り外し	108
	10.5.2 スピンドルフランジの取り外し	110
	10.5.3 ドローチューブアダプターの取り外し	111
11	お手入れ	112
	11.1 メンテナンス時の安全性	112
	11.2 メインテナンスのスケジュール	112
	11.3 清掃	113
	11.4 目視点検	116
	11.5 製品の潤滑	117
	11.6 潤滑剤の使用	118
12	廃棄処理	119
13	不具合	120
	13.1 不具合発生時の処置	120
	13.2 トラブルシューティング	121
	13.3 不具合が解決した後の起動	122
14	付属書	123
	14.1 お問い合わせ	123
	1/1 9 制造老訂明書	192

表一覧

表	1:	テクニカルデータ	25
表	2:	運転条件	32
表	3 :	用語の使用制限	40
表	4:	ワークの最大質量	41
表	5:	クランプ力の分散幅	45
表	6:	接触形状/接触時	45
表	7:	接触係数	46
表	8:	個別の切削力	47
表	9:	鋼材ワークの摩擦係数	48
表	10:	クランピングヘッド重量 および回転軸とクランピングヘッド音	ß
		重心との距離 / [m]	49
表	11:	テールストックの最大許容把持力	51
表	12:	最大許容切削力	52
表	13:	最大許容横せん断力	53
表	14:	横せん断力に基づく最大許容トルク力	54
表	15 :	ネジ締め付けトルク	66
表	16 :	アルミニウム製部品のネジ締め付けトルク	66
表	17:	メンテナンス表1	.13
表	18:	潤滑剤の選択 1	.18
表	19:	トラブルシューティング 1	22

一般事項 1

1.1 この取扱説明書について

本書は本製品の安全で効率的な取扱いを目的としています。 本書は製品の一部です。いつでも手に取れるように、本製 品とともに保管して下さい。すべての作業を始める前に、 本説明書を注意深く最後までお読み頂き、内容をご理解下 さい。ここに示した注意事項は、製品を安全にお使い頂き、 あなたや他の人への危害や損害を未然に防止するものです。 いずれも安全に関する内容ですから、必ずお守り下さい。

本製品を第三者に譲渡する場合は、本説明書も一緒にお渡 しください。

本書の図版は基本的な理解を得ていただくために使用して おり、実際の製品とは異なることがあります。

▲ 警告

個々の製品やそれらの不適切な組み合わせによっ て、重大な損傷が生じる可能性があります。

個々の製品とその組み合わせのすべての取扱説 明指示を読み、それに従う必要があります。

1.2 記号の説明

本書では安全情報が一目で分かるアイコンを使用していま す。安全上の注意事項は、その危険度がもたらす重大性を 示すシグナルワードで説明されます。

致死事故や重傷の能性ならびに物的損害の発生を避けるた めに、安全上の注意事項は必ず守り、正しくお取り扱い下 いら

安全上の注意事項・表示 について

⚠ 危険

··· 危険が回避されない場合は、その結果死亡または 重傷を負うような、差し迫った危険な状態を示して います。

··· 危険が回避されない場合に、その結果死亡または 重傷を負う可能性のある潜在的な危険がある状態を 示しています。

··· それらが回避できなかった場合、軽傷またはケガ をする可能性のある、潜在的な危険がある状態を示 しています。

1 留意事項

… それに反した場合、物的損害が生じる可能性のあ る状態を示しています。

ヒントと推奨事項

ที 情報

… 効率的で適切な使用に役立つヒント、推奨事項お よび損害を未然に防ぐための情報を示しています。

😵 安全な取り扱いのための他の資料の参照を促してい ます。

製品や個々の部品には、警告ラベルが付いていることがあ ります。

致死事故や重傷の可能性ならびに物的損害の発生を避ける ために、警告ラベルの指示は必ず守り、正しくお取り扱い 下さい。

...溜められた応力(バネなど)の危険を警告していま す。

... 手を負傷する危険があることを警告しています。

...製品の取扱説明書を読む必要があることを示していま す。

1.3 用語の定義

1.3.1 アンクランプポジション

アンクランプポジションは、コレットチャックのクランピングを解除するポジションです。コレットチャックがアンクランプ状態になると、ワークも同時に自由に動くようになります。

1.3.2 全クランプ予備ストローク

全クランプ予備ストロークは、ワークなしてコレットチャックでチャッキングすることです。全ストロークが送り出され、コレットチャックは予備ストロークの終端位置になります。

1.4 賠償責任の制限

本説明書のすべての記述と参照事項は、該当する各規格および規制、技術水準、ならびに当社の長年にわたる知識と 経験をもとに作成しております。

製造元は次の原因による損傷に対し、一切の賠償責任を負いません。

- 設置説明書の指示を守らない使用
- 用途に従わない使用
- 適切な訓練を受けていない作業員による使用
- 無許可での改造
- 使用者による技術的な変更
- 指定されたスペア部品以外の使用
- 許可されていない付属品の使用
- 製造元の純正品以外のクランプエレメントの組付けと 使用

納入契約に付随する合意された責任、普通取引約款と製造元の出荷条件、および契約締結時に有効であった法規定が 適用されます。

1.5 著作権

本設置説明書は著作権で保護されており、専ら内部使用を 目的としています。

製造元からの文書による許可なしに、内部使用目的以外で本取扱説明書を第三者への譲渡、あらゆる方法および形態 (抜粋を含む)による複製、ならびに本書の内容を利用および/または開示することを固く禁じます。

違反した場合は損害賠償が課せられます。当社はその他、 追加の要求を実施する権利を保留します。

1.6 同梱品

以下は、ご注文品の付属品として製品に同梱されます。

- TOPlus mini / TOPlus premium
- 取扱説明書

以下の工具が追加で必要になり、オプションとしてご注文 いただけます。

- スピンドルフランジ
- ドローチューブアダプター
- クランピングヘッド
- エンドストップ
- コレット交換工具
- 刃先ガイド付きドライバービット
- アライメント試験セット [TOPlus プレミアム用]

1.7 スペア部品と付属品

警告

誤ったスペア部品や欠陥のあるスペア部品を使用す ると、重大な損傷が生じる可能性があります。

メーカー純正のスペア部品のみご使用くださ 061

▲ 警告

誤ったクランプエレメントや欠陥のあるクランプエ レメントを使用すると、重大な損傷が生じる可能性 があります。

製造元純正のクランプエレメントのみご使用く ださい。

留意事項

誤ったスペア部品や欠陥のあるスペア部品を使用す ると、製品の損傷、誤作動、あるいは機器の全損に 至ることがあります。

メーカー純正のスペア部品のみご使用くださ 061

留意事項

誤ったクランプエレメントや欠陥のあるクランプエ レメントを使用すると、製品の損傷、誤作動、ある いは機器の全損に至ることがあります。

製造元純正のクランプエレメントのみご使用く ださい。

スペア部品と付属品は、販売代理店または直接製造元からご購入いただけます(「お問い合わせ」の章を参照)。 基本的に、消耗部品やワークが接触する部品は保証の対象 外です。

1.8 保証期間

保証期間は製造元の普通取引約款に記載されています。

2 安全

このセクションでは、作業員の最大限の安全と、安全で機 能不良のない運転のために、安全に関するあらゆる重要な 側面について概説します。

2.1 作業員の責任

本製品は産業分野で使用されます。本製品を使って加工を 行う事業主は、作業員の労働安全について法的責任を負う 義務があります。

本取扱説明書の安全情報のほかに、本製品の用途に関して 適用される安全性、事故防止、環境保護に関する現地の適 用法規制を遵守し、工作機械の取扱説明書の説明に従って 下さい。

製品の改造は禁止されています。改造に起因する負傷や物 的損害は、すべて事業主の責任となります。

ただし、独自加工のためにハインブッフ社により明示的に 提供された換装部品は、その限りではありません。この場 合の加工は指定された制限を決して超えてはなりません。

▲ 危険

操作力が低下したり、チャック圧力が低下したりす ると、ワーク飛散により重傷を負う危険がありま す。

- 製品の使用中に操作力やチャック圧力が低下し ないように、機械側で安全性を確保してくださ 61
- 機械側で作動力やチャック圧力を維持する対策 が講じられていない機械では、本製品の使用は 禁止されます。
- 工作機械の取扱説明書に従ってください。

特に、各製品に対する工作機械の終端検出が調節されるよ うに気を付けて下さい。

機械が正しく据え付けられていない場合、ワーク飛 散により重傷を負う危険があります。

- 工作機械の終端検出は、製品ごとに設定してく ださい。
- 工作機械の終端検出は定期的に点検してくださ い(「メンテナンスのスケジュール」の章を参 照)。
- 終端まで到達しない場合は、製品をそれ以上使 用しないでください。

2.2 操作員の要件

警告

所定の資格を持たない作業員が作業した場合、本製 品の誤った取り扱いによって重傷を負う危険があり ます。

すべての作業は、必ず、その作業を行う資格の ある専門作業員が行ってください。

関係者でない人員が作業区域に許可なく立ち入る と、重傷を負う危険があります。

- 関係者以外の人員が作業区域に立ち入らないよ うにしてください。
- 関係者かどうかが不明な場合は、作業区域への 立ち入りを拒否してください。
- 関係者以外が作業区域にいる間は、作業を中断 してください。

留意事項

所定の資格を持たない作業員が作業した場合、本製 品の誤った取り扱いによって重大な損傷を与える危 険があります。

すべての作業は、必ず、その作業を行う資格の ある専門作業員が行ってください。

本取扱説明書では各種の作業範囲について、次の資格が指 定されています。

専門作業員

専門作業員は、専門的な教育、知識、経験ならびにその地 域の当該法規の知識に基づいて、割当てられた作業を実行 し、起こり得る危険を把握し、回避できる人員です。

油圧機器専門作業員

油圧機器専門作業員は、従事する特殊な作業領域に関する 教育訓練を受け、関連する各種基準および法規の知識を有 している人員のことを指します。

油圧機器専門作業員とは、専門的な教育と経験に基づいて 油圧設備での作業を遂行し、潜在的な危険を自発的に察知 し、回避することができる者とします。

空圧機器専門作業員

空圧機器専門作業員は、従事する特殊な作業領域に関する 教育訓練を受け、関連する各種基準および法規の知識を有 している人員のことを指します。

空圧機器専門作業員とは、専門的な教育と経験に基づいて 空圧設備での作業を遂行し、潜在的な危険を自発的に察知 し、回避することができる者とします。

電気技術者

電気技術者とは、従事する特殊な作業領域に関する教育訓 練を受け、関連する各種基準および法規の知識を有してい る人員のことを指します。

電気技術者とは、専門的な教育と経験に基づいて電気設備 での作業を遂行し、潜在的な危険を自発的に察知し、回避 することができる者とします。

研修生

研修生は、その専門分野の専門作業員による監督と指導の 下でのみ、機械の作業にあたることができます。

作業を確実に実行すると期待できる作業員にしか、作業は 認められません。たとえば、麻薬、アルコール、薬物例に より、対応能力に影響がある者は作業員として不適合です。 作業員の選定においては、工場の拠点で適用される年齢・ 職業関連法規を遵守して下さい。

2.3 用途に従う適切な使用

本製品は、着脱式保護装置が付いた CE 準拠の工作機械に 装着して使用するものです。

本製品は、取扱説明書に記載された用途のみに設計され ています(「使用」の章を参照)。さらに、それ以外の 使用目的を製造元と事業主の間の契約により取り決める ことができます。

それぞれの分野の訓練を受けた専門操作員のみに、本製 品の取付け、運転、メンテナンス、清掃が認められてい ます(「操作員の要件」の章を参照)。

本製品は、指定された技術データの値の範囲でのみ運転 できます(「一般仕様」および「運転条件」の章を参 照)。

また、製品の使用制限を超えての使用は決してしないで ください(「使用の制限」の章を参照)。

製品は定期的にお手入れしてください(「メンテナンス 間隔」の章を参照)。

本製品の動作信頼性は、適用が想定されるすべての関連安 全基準を遵守して、指定用途に基づいて使用した場合に限 り保証されます。

規定用途に従う適切な使用には、本取扱説明書のすべての 記載事項を守ることも含まれます。

本製品を規定の用途に反して使用したり、規定の用途以外 に使用したりする場合は製品の濫用となり、危険な状態を 招く可能性があります。

↑ 危険

製品の誤った使用により重傷を負う危険がありま す。

- 着脱式保護装置の付いた CE 準拠の工作機械での み、使用してください。
- 所定の使用目的でのみお使いください(「使用 方法」の章を参照)。
- 本製品は、それぞれ専門分野の訓練を受けた専 門操作員のみ使用してください(「操作員の要 件」の章を参照)。
- 本製品について指定されているテクニカルデー タの範囲を超えた使用を禁止します(「一般仕 様」と「運転条件」の章を参照)。
- ご使用にあたっては、製品の使用制限を決して 超えないようにしてください(「使用の制限」 の章を参照)。
- 製品は定期的にお手入れしてください(「メン テナンス間隔 | の章を参照)。
- 認定されている取付部品やクランプエレメント のみを装着してください。

ワークなしで運転をすると物体が飛散し、重傷を負 う危険があります。

- ワークを置かない状態では、決して製品を回転 させないでください。
- 運転に先立ち、使用可能なすべてのクランプ位 置で相応なワークをチャックしてみる必要があ ります。

留意事項

製品の誤った使用により物的損害が生じる可能性が あります。

- 着脱式保護装置の付いた CE 準拠の工作機械での み、使用してください。
- 所定の使用目的でのみお使いください(「使用 方法」の章を参照)。
- 本製品は、それぞれ専門分野の訓練を受けた専 門操作員のみ使用してください(「操作員の要 件」の章を参照)。
- 本製品について指定されているテクニカルデー タの範囲を超えた使用を禁止します(「一般仕 様 | と「運転条件 | の章を参照)。
- ご使用にあたっては、製品の使用制限を決して 超えないようにしてください(「使用の制限」 の章を参照)。
- 製品は定期的にお手入れしてください(「メン テナンス間隔」の章を参照)。
- 認定されている取付部品やクランプエレメント のみを装着してください。

規定の用途以外での使用に起因する損傷に対する請求には 一切応じかねます。

本装置の規定用途に反する使用には、たとえば以下のもの があります。

- ワークが正しくチャッキングされていない場合
- 安全注意事項を守らずに追加の保護装備なくチャッキ ングしたワークの加工といった、本製品での作業を行 う場合
- 加工対象外の機械やワーク、換装部品に対して製品を 使用する場合

2.4 作業員の安全装備

健康上のリスクを最小限にするために、作業時においては 安全装備の着用が必要です。

作業中は、常にそれぞれの作業に必要な安全装備を着用し て下さい。

作業区域の該当する安全装備に従って下さい。

基本的な装備

すべての作業において、基本的に以下の着用が義務づけ られます。

作業用衣服

体型にぴったりフィットした、袖口が狭く、だぶついて いない、破けにくい素材の安全作業服を着用して下さ い。こうした安全作業服は、主に機械の可動部分に挟ま れるのを防ぎます。指輪、ネックレス、その他のアクセ サリーは身につけないで下さい。

安全靴

重い部品が落下した場合や、滑りやすい床での転倒から 守ります。

保護めがね

部品の飛散や液体の飛沫から目を守ります。

ヘアネット

機械の回転部品に長髪が巻き込まれるのを防ぎます。

追加の安全装備

特殊な作業を行う場合には、追加の安全装備が必要で す。これらの作業については、本取扱説明書のそれぞれ の章で別途説明します。ここでは、追加の安全装備につ いて説明します。

保護手袋

擦り傷、擦りむき、挟み込みや深い裂傷、および高温表 面への接触などによる火傷から手を守ります。

安全ヘルメット

部品や被削材の落下や飛散から頭部を守ります。

2.5 特殊な危険

次の項では、工作機械への本製品取り付け時に発生する、 その他の危険について説明します。いずれの場合も、事業 主は機械のリスク評価により見つかった残留リスクを通知 する義務があります。

健康上の危害を防止し、危険な状態を回避するために、こ こに示した安全情報および本取扱説明書の後続の各章の注 意事項を守ってください。

可動部品

▲ 警告

回転する部品や可動部品に触れて重傷を負う危険が あります。

- 運転中はカバーを開けないでください。
- 運転中は回転する部品や可動部品に手を入れな いでください。
- 可動部品ではスロット寸法を守ってください。
- カバーを開ける前に、機械のどの部分も動いて いないことを確認してください。

ストローク

▲ 警告

製品のストロークにより激しい打撲や裂傷を負う危 険があります。

- 可動部分には決して手を入れないでください。
- (誤った電源接続工事やプログラミングエラー などにより)クランプ操作が不用意に開始され ないようにしてください。

十分なクランプ力でチャ ッキングされていないワ ークのクランプ

危険

十分なクランプ力でワークがチャッキングされてい ない場合、ワーク飛散により重傷を負う危険があり ます。

- ワークのクランプ径はクランプ幅直径を超えて はなりません。
- ワークのクランプ力は所定の限度を超えてはな りません(「仕様の制限」の章を参照)。
- 最大性能データを超えて運転しないでください (「一般仕様」の章を参照)。

十分なクランプ力でチャ ッキングされていないワ ークのクランプ

警告

作動力が強すぎると、製品の部品が破損し、重傷を 負うことがあります。

作動力を定期的にチェックし、必要に応じて調 整してください。

鋭いエッジ部分

▲ 警告

鋭いエッジ部分やバリにより重傷を負う危険があり ます。

- 各部品の取付けは、それぞれの専門作業に関す る資格を有する専門作業員だけが行うことがで
- 基本の装備に加えて、次の安全装備を着用して

2.6 繊維強化プラスチック(FRP)製品

極めて動性の高い機械において慣性モーメントを低減する 繊維強化プラスチック(FRP)製品が使用されています。

繊維強化プラスチック (FRP) 製品では、製品名称に特に CFK というラベルが付いています。

繊維強化プラスチック製品のカーボン部品では以下に気を 付けてください。

▲ 警告

製品の疲労強度が著しく低下することにより、重傷 を負う危険があります。

- 製品のカーボン部品に目に見える損傷や確認で きる摩耗の兆候がないか、点検してください。
- 損傷があった場合は、まず製造元にご相談くだ いら

情報 ñ

繊維強化プラスチック (FRP) 製品では、スピンドル フランジは常にアルミ製です。

アルミニウム製部品には場合により異なるネジ締め 付けトルクが適用される場合があるので気を付けて ください(「ネジの締め付けトルク」の章を参 照)。

2.7 その他の安全注意事項

危険

回転中にクランプを解除すると、ワークが飛び出し て重傷を負う危険があります。

クランピング作業は、ワークの回転時には決し て行わないでください。

警告

機械の作業領域に立ち入ることで頭に重傷を負う危 険があります。

- 切削工具や鋭利な物体がそこに置かれていな い、またはそれにカバーがかかっている場合に のみ、機械の作業領域に立ち入ることができま す。
- 機械の作業領域のなかでは、部品が落下する危 険がある位置に頭部が来ないようにしてくださ 61

機械のスピンドルの回転時に身体の一部が挟まり、 重傷を負う危険があります。

- 機械のスピンドルが回転している間、は決して 製品に手を入れないでください。
- 製品で作業する前に、機械のスピンドルの作動 が終了して切断されていることを確認してくだ いら

♠ 警告

スリットやピン穴に指を差し込むと、重傷を負う危 険があります。

スリットやピン穴には決して指を入れないでく ださい。

▲ 警告

クランプを解除すると、ワークが落下し、重傷を負 う危険があります。

ワークのクランプを解除するときは、必ず、ワ 一クが落下しないように固定されていることを 確認してください。

警告 警告

損傷した製品や部品、またはそれらの付属品を使用 すると、重傷を負う危険があります。

- 製品やその部品および付属品は、目に見える損 傷がないか、定期的に点検してください(「点 検」および「清掃」の章を参照)。
- 損傷した製品や部品、またはそれらの付属品の 使用は禁止されています。
- 損傷がある場合はすぐに事業主に連絡してくだ さい。
- 損傷した部品/付属品は製造元純正のスペア部品 /付属品と交換する必要があります。

注意 注意

摩耗や再加工を繰り返すことで鋭利なエッジやバリ ができ、深い切り傷を負うことがあります。

- 鋭利なエッジやバリは除去してください。
- 消耗した部品は、必要に応じて製造元の純正ス ペア部品と交換してください。

留意事項

回転中にクランプを解除すると、ワークが飛び出し て工作機械に重大な損傷を生じる可能性がありま す。

クランピング作業は、ワークの回転時には決し て行わないでください。

留意事項

誤ったネジを緩めることにより、物的損害が生じる 可能性があります。

シールワックスで密閉されたネジは緩めないく ださい。

2.8 ネジ

警告

不適切な取り付けや取り扱いでネジや位置決めネジ が緩んで重傷を負う危険があります。

- シールワックスで密閉されたネジは緩めないく ださい。
- 製品に取り付けられた、接着されたネジや位置 決めネジは、市販の中ぐらいのネジロックで固 定し直し、規定の締付けトルクで締め付ける必 要があります(製品仕様または「ネジの締め付 けトルク」の章を参照)。新たに組付けるとき には、予めネジと内部スレッドを清掃し、脱脂 する必要があります。
- シールワックスで密閉され、まだ接着している ネジや位置決めネジは、規定の締付けトルクで 締め付ける必要があります(製品仕様または 「ネジの締め付けトルク」の章を参照)。
- これについて不明点がある場合は、直ちに製造 元に連絡して、対応を問い合わせて下さい。

2.9 機能性

製品のひどい汚れにより重傷を負う危険がありま す。

指定された清掃方法と清掃頻度は必ず守ってく ださい(「清掃」の章を参照)。

2.10 環境保護

图意事項

環境に有害な物質の誤った使用や誤った廃棄により、環境に重大な損傷や支障を及ぼす危険があります。

- 環境にとって危険な物質を不注意で放出した場合は、直ちに適切な措置を講じて下さい。
- 疑わしい場合は、その事実を当該の地域当局に 通報してください。

使用されている、環境に危険な物質は次のとおりです。

潤滑剤、添加剤、燃料

グリースやオイルなどの潤滑剤には毒性物質が含まれている場合があります。これらは一般ゴミとして廃棄できません。

環境に有害な物質は、専門業者に廃棄を委託する必要があります(「廃棄」の章を参照)。

3 テクニカルデータ

3.1 一般仕様

サイズ	クランプ範囲 (mm)	軸方向リリースストローク (mm)	軸方向クランプ予備ストローク (<i>mm</i>)	半径方向クランプ径 (mm)	半径方向予備ストローク (mm)	合計重量 (kg)	スピンドルフランジの重量 (kg)	機能ユニットの重量(kg)		寸法 [ø x 長さ] [mm]	最大回転数 * [min ⁻¹]	軸方向クランプ力 Faxmax.	半径方向クランプ力 Frad max (kN)	nバランス精度(対象面) G
26	4-26	2.0	1.0	0.6	0.6	4. 1- 9. 1	2.0- 7.0	2. 1	Ø x	114.0~ 128.0 100.0~ 190.0	10000	16	35	4/1
40	4-40	2.0	2.0	0.5	0.8	6. 0- 10. 5	2. 5- 7. 0	3.5	Ø x	132.0~ 163.0 106.0~ 190.0	7000	33	103	4/1
52	4-52	2. 5	2.0	0.6	1.0	9. 2- 23. 2	4. 0- 18. 0	5. 2	Ø x	149.0~ 204.0 105.0~ 230.0	7000	40	108	4/1
65	4-65	2. 5	2.0	0.6	1.0	10.6- 42.1	4.5- 36.0	6. 1	Ø x	165.0~ 230.0 111.0~ 250.0	6000	45	120	4/1
80	5-80	2.5	2.0	0.6	1.0	13. 2- 43. 9	4. 6- 34. 7	7. 4	Ø x	176.0~ 230.0 115.0~ 250.0	5500	50	132	4/1
100	15-100	5.0	3.0	1.6	1.5	50.5	10. 5- 36. 0	14. 5	Ø x	221.0~ 280.0 150.0~ 250.0	4650	65	172	4/1

^{*} 標準的なクランプヘッドを使用した場合の値です(「許容最大速 度」の章を参照)。

表 1: テクニカルデータ

3.2 性能指標

留意事項

最大性能データを超える状態で製品や工作機械を使用することにより、物的損害が生じる可能性があります。

- 製品の最大性能データを超えた運転はしないでください。
- 使用されるすべての製品の中で、最も低い最大 性能データを超えないようにしてください。
- 製品は、同じ性能仕様の工作機械でのみ使用してください。

骨情報

最大性能データはそれぞれの製品に付いています。 摩耗により性能データが判読不能となっている場合 は、取扱説明書で確認してください。

どれだけの作動力が得られるかは、製品の状態 (潤滑状態と汚れの程度)によって異なります (「メインテナンスのスケジュール」の章を参照)。

作動力の結果として得られるクランプ力は、定期的に検査 する必要があります。そのためには、据付式のクランプ力 測定を行います。

測定されたクランプ力は許容範囲内でなければなりません (「クランプ力のグラフ」の章を参照)。

3.3 バランス精度

本製品のバランスは工場出荷時に設定されています(バラ ンス精度については、「一般仕様」の章を参照)。

↑ 危険

製品のバランスがとれていない場合、部品が飛び出 して重傷を負う危険があります。

- 非軸対称ワークはチャッキングしないか、また は製造元にご相談のうえ、チャッキングして下 さい。
- 製品のバランス調整ねじとバランス調整ウェイ トは、決して外さないで下さい。

留意事項

バランスがとれていない製品による加工で物的損害 が生じる可能性があります。

- 非軸対称ワークはチャッキングしないか、また は製造元にご相談のうえ、チャッキングして下 さい。
- 製品のバランス調整ねじとバランス調整ウェイ トは、決して外さないで下さい。

3.4 回転速度

本製品は旋盤加工に使用できるように設計されています。 標準的なクランプヘッドを使用した場合の最大回転数は、 製品に表示されています[最高速度については、「一般情 報しの章を参照〕。特殊なクランプヘッドを使用している 場合は、許容最大回転数が低下します「「許容最大速度」 の章を参照]。

▲ 危険

各種製品を不適切に組み合わせると、部品が飛び出 して重傷を負う危険があります。

組み合わせる製品について記載された最大回転 速度のうち、必ず、最も低い回転速度を使用し てください。

危険

遠心力によりクランプ力が低下し、ワークが飛び出 して重傷を負う危険があります。

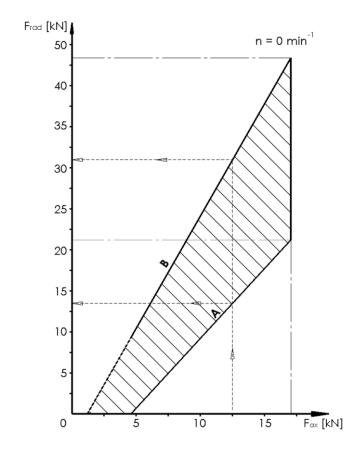
- ワークを置かない状態では、決して製品を回転 させないで下さい。
- クランプ位置が複数ある場合は、それぞれに合 ったワークをクランプしてください。
- また、必要に応じて加工力を調整してくださ 061

3.5 クランプ力のグラフ

クランプ力のグラフは、半径方向クランプ力が軸方向の作 用力に応じて動ける許容範囲を示します。

クランプ力のグラフに、摩擦とクランプ径の影響を示しま す。

警告 警告

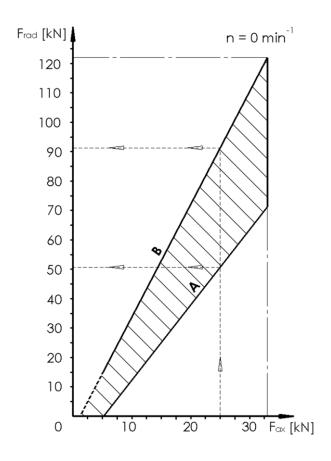

クランプ力が低すぎると、重傷を負う危険がありま す。

- 半径方向クランプ力 Frad の測定値は、許容範囲 内でなければなりません。
- 測定値が許容範囲外であった場合は、製品を必 ず清掃し(「清掃」の章を参照)、もう一度ク ランプ力を測定してください。
- 清掃した後の測定値がまだ許容範囲外である場 合は、製造元にご連絡ください。

3.5.1 サイズ 26

例:

軸方向の作用力 F_{ax} が 12.5 kN の場合、半径方向のクランプ力 F_{rad} は 13 kN \sim 31 kN になります。

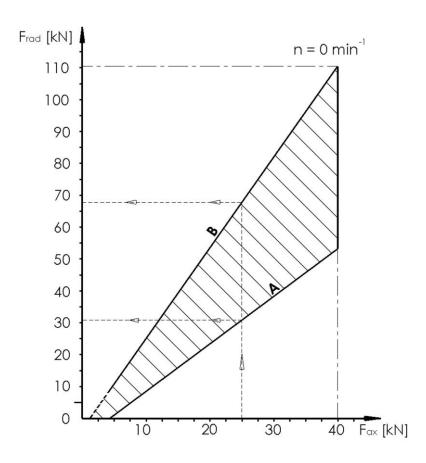


- A
 下限值

 B
 上限值
- 3.5.2 サイズ 40

例:

軸方向の作用力 F_{ax} が 25 kN の場合、半径方向 の $ク ランプ 力 F_{rad}$ は 50.7 kN ~ 91.3 kN に なります。

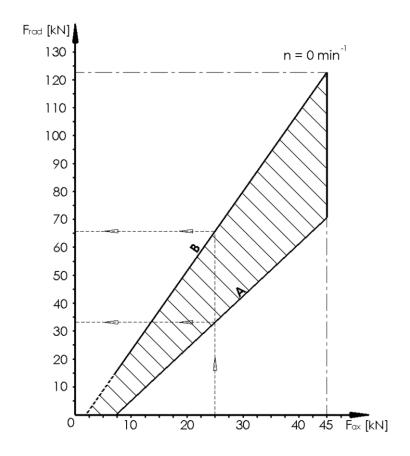

 A
 下限值

 B
 上限值

3.5.3 サイズ 52

例:

軸方向の作用力 F_{ax} が 25 kN の場合、半径方向 の クランプ 力 F_{rad} は 31 kN \sim 67.7 kN になります。

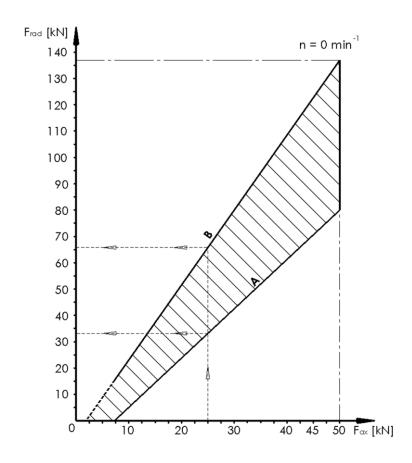

 A
 下限值

 B
 上限值

3.5.4 サイズ 65

例:

軸方向の作用力 F_{ax} が 25 kN の場合、半径方向 の クランプ 力 F_{rad} は 33 kN \sim 65.7 kN になります。

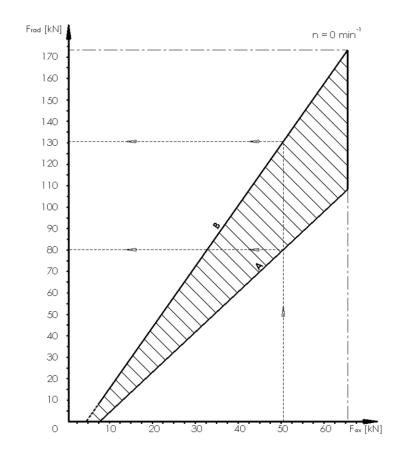


- A 下限值
- B 上限値

3.5.5 サイズ 80

例:

軸方向の作用力 Fax が 25 kN の場合、半径方向 のクランプ力 F_{rad} は $33~\rm kN\sim65.7~\rm kN$ にな ります。



下限值 A В 上限值

3.5.6 サイズ 100

例:

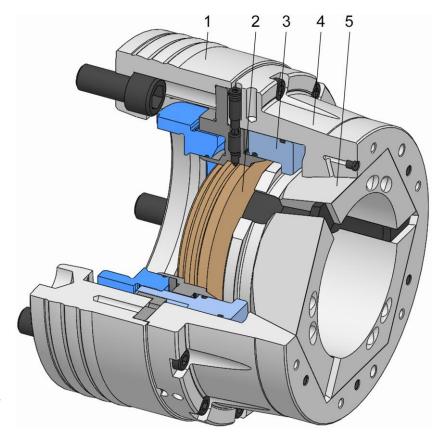
軸方向の作用力 Fax が 50 kN の場合、半径方向 のクランプ力 F_{rad} は 80 kN \sim 130 kN にな ります。

A 下限值 В 上限值

3.6 運転条件

指定值	值	単位
使用温度範囲 (周囲温度)	15~65	° C
ワークの温度	≤ 80	° C
相対湿度	≤ 80	%

表 2: 運転条件


3.7 型式の表示

型式は各製品に表示されており、以下の内容が記載されています。

- 製造者
- 製品名称
- ID 番号(#記号で示されています)
- 製造年
- 最大回転速度 *n* [*min*⁻¹]
- 最大作動力 $F_{ax max}[kN]$
- 最大クランプ力 $F_{rad\ max}[kN]$

4 構造と機能

4.1 部品の図と概要説明

- 1 スピンドルフランジ
- ベースエンドストップ
- カップリング
- 4 機能ユニット
- クランピングヘッド(ク ランプエレメント)

コレットチャックはバー材加工が可能な中空チャックであ るとともに、中実チャックとしても使用できます。

スピンドルフランジは機械のスピンドルに取り付けます。

コレットチャックはドローチューブアダプターを介して工 作機械のドローチューブにねじ込み、スピンドルフランジ で締め付けます。

クランプエレメントは適したコレット交換工具によりコレ ットチャックに組み込まれ、加工対象のワークをチャッキ ングします。

エンドストップはベースエンドストップにねじ込んで直接 締め付けるか、フロントエンドストップとして使用できま す。

コレットチャックは引込み型チャックとして機能します。 クランプエレメントではチャッキングの際にエンドストッ プ方向の軸運動が発生します。

可動式カップリングが固定された円錐部にクランプエレメ ントを引き込みます。

それによってワークは静止しているエンドストップにしっ かり引き込まれます。

これでチャッキングの強度が高まります。

TOPlus プレミアムコレットチャックを使用する場合は、可能な限り最高の同心度を実現するために、エンドストップを使用する必要があります。

4.2 必須付属品

4.2.1 スピンドルフランジ

スピンドルフランジは工作機械にコレットチャックを取り付けるためのアダプターです。

注文の内容に応じてスピンドルフランジは製品に同梱されるか、またはお客様の方でご用意いただくことになります。

4.2.2 ドローチューブアダプター

ドローチューブアダプターは工作機械のドローバーとコレットチャックを接続するコンポーネントで、機械の型式に応じて様々な形状のものがあります。

4.2.3 クランピングヘッド

クランピングへッドによって加工対象のワークを把持します。クランピングへッドは硬スチール部分とラバー部分からなり、特殊なラバーモールディング (加硫接着)により接合されています。

ワークの要件に応じて適切なサイズ、クランプ面形状、クランプボア形状などをお選びいただけます。

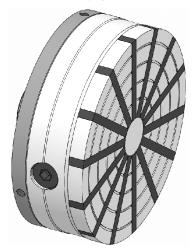
4.2.4 エンドストップ

エンドストップは、お客様が希望するストッパサイズで製作されます。

4.2.5 アライメントセット

アライメントセットは、製品の調整のために TOPlus プレミアムの場合のみ必須です。

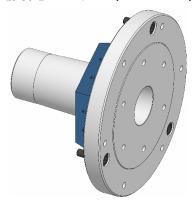
4.3 オプションの付属品


以下のオプション付属品を各種の製品サイズでご用意しています。

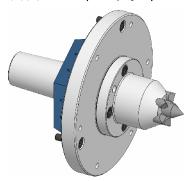
4.3.1 ジョーモジュール

ジョーモジュールはクランプジョーを取り付けるための アダプターです。ジョーモジュールを使用すると、クラ ンプ装置のクランプ範囲直径を拡大できます。

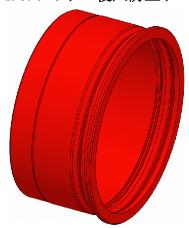
4.3.2 マグネットモジュール


マグネットモジュールは研削加工や旋盤加工を行う強磁 性素材を取り付けるためのアダプターです。

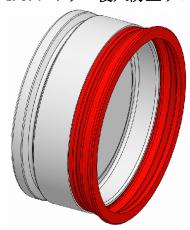
4.3.3 MANDO Adapt


MANDO Adapt を使用すると、ワークの内径クランプが可能 になります。

4.3.4 モールステーパー アダプター


モールステーパー アダプターを使用すると、モールステ ーパー接合部を介して各種アダプターが使用できるよう になります。

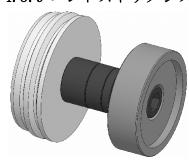
4.3.5 フェイスドライバー アダプター


フェイスドライバー アダプターを使用することによっ て、フェイスドライバー全長を上回る長さのワークを加 工できます。

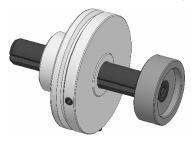
4.3.6 キリコ侵入防止リング

コレットチャックを中空チャックとして使用する場合は、既存のベースエンドストップをキリコ侵入防止リングで代用できます。

4.3.7 キリコ侵入防止リング付きベースエンドストップ

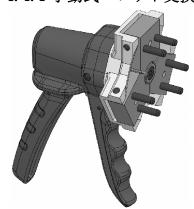

コレットチャックを中実チャックとして使用する場合は、既存のベースエンドストップをキリコ侵入防止リング付きベースエンドストップで代用できます。

4.3.8 エンドストップシステム ヴァリオ フレックス

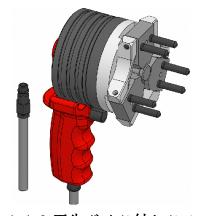

エンドストップシステム ヴァリオ フレックスを使用すると、コレットチャックからワークを自動的に取り出すことができます。

4.3.9 エンドストップシステム ヴァリオ パート

エンドストップシステム バリオ パートはゲージブロックボックスと同じ原理で機能し、1 mm 刻みの精度で調整できます。


4. 3. 10 エンドストップシステム ヴァリオ クイック

エンドストップシステム ヴァリオ クイックは精密な台形 ネジで調整し、クランプ幅をすばやく調節できます。


4.4 特殊工具

4.4.1 手動式コレット交換工具

コレット交換工具のピンをクランピングヘッド端面の穴 に差し込みます。コレット交換工具を手動で操作し、ク ランピングヘッドをコレットチャックに取り付けます。 コレット交換工具は、サイズに応じて片手または両手で 操作できるように作られています。クランピングヘッド はコレット交換工具にチャックされ、交換工具によりコ レットチャックに取り付けられます。

4.4.2 空圧式コレット交換工具

コレット交換工具のピンをクランピングヘッド端面の穴 に差し込みます。コレット交換工具をエアー圧により駆 動し、クランピングヘッドをコレットチャックに取り付 けます。コレット交換工具は、サイズに応じて片手また は両手で操作できるように作られています。クランピン グヘッドはコレット交換工具にチャックされ、交換工具 によりコレットチャックに取り付けられます。

4.4.3 刃先ガイド付きドライバービット

刃先ガイド付き六角ドライバービット(場合により納品 物に同梱)は、皿小ねじを締め付けたり緩めたりするの に使用します。

5 用途と使用の制限

5.1 使用

本製品は、軸対称ワークを機械加工するために、ワーク をチャッキングするためのクランプ装置です。

一般的な用途のほかにも、必要に応じて本製品は本書に 記載された特殊用途にも使用できるように設計、開発さ れています(詳細はクランプ製図または注文内容をご覧 ください)。

記載されている用途以外での使用には製造者の明示的な 許可が必要です。

「一般情報」の章に記載されているデータは、標準的なクランプへッドを使用した場合のものです。

コレットチャックは中実チャックとして使用できます。ベースエンドストップに直接取り付けるか、またはエンドストップをコレットチャックに取り付けることができます。その場合、コレットチャックのさまざまな位置に組み付けられるようになっています。

また、コレットチャックはバー材加工が可能な中空チャックとしても使用できます。その場合は、ベースエンドストップを取り外す必要があります。汚れ防止のために、キリコ侵入防止リング(オプション品)を取り付けることができます。

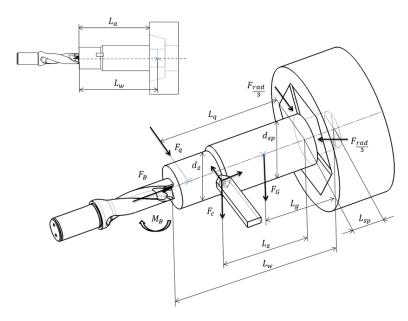
製造元が提供する互換性のある各種アダプターを使えば、 コレットチャックを素早く別のチャッキング用に換装でき ます。

5.2 使用の制限

ワークの機械加工においては、クランピングヘッドとコレットチャックにこの利用制限が適用されます。

4 種類のコレットチャックとクランピングヘッドチャック にそれぞれ使用制限がありますので、これらについてはご 利用の前に個別にご確認ください。

5.2.1 用語


記号	単位	説明	
a_p	mm	旋回加工の切削深さ	
c	-	接触係数	
D	mm	クランピングヘッドのクランプ径	
D_B	mm	穴の直径	

記号	単位	説明
d_{sp}	mm	クランプ径
d_z	mm	旋回加工の切削径
f	mm	旋回加工の送り / 回転 穴あけ加工の送り /切削
F_{ax}	kN	軸方向作動力
F_B	N	穴あけ加工の送り力
$\overline{F_c}$	N	旋回加工の切削力
$F_{c max}$	N	旋回加工の最大切削力
f_{fz}	N	回転補正のための追加クランプ力
$\overline{F_G}$	N	ワークの重量
f_n	mm	穴あけ加工の送り / 回転
F_q	N	せん断力
$F_{q max}$	N	最大許容横せん断力
F_{rad}	N	半径方向のクランプ力
$F_{rad\ erf}$	N	必要な半径方向クランプ力
F_{sk}	N	ワークがずれないためのクランプ力
F_{SZ}	N	旋回および穴あけ時のチャック軸方向の 切削力とトルク力を受け止めるためのク ランプ力
$\overline{F_t}$	kN	テールストック把持力
$F_{t max}$	kN	最大テールストック把持力
k_c	$\frac{N}{mm^2}$	特別切削力
L	mm	チャックの合計サイズ
L_a	mm	ワーク突出長さ
L_g	mm	ワーク中心とクランプ部間の距離
L_q	mm	穴あけ加工部とクランプ部間の半径方向 距離
L_{sp}	mm	クランプ長さ

記号	単位	説明
$L_{sp\ min}$	mm	必要最小クランプ長さ
$L_{sp\ v}$	mm	合計クランプ幅
L_w	mm	ワーク長
L_v	mm	クランピングヘッド突出部分
L_z	mm	旋回時の「加工部-クランプ部」間の距離
m	kg	クランピングヘッドの重量
M_B	Nmm	穴あけ加工のトルク力
M_q	Nm	チャック軸に対する横せん断力に基づく トルク力
$M_{q max}$	Nm	チャック軸に対する横せん断力に基づく 最大トルク力
m_w	kg	ワークの重量
$m_{w max}$	kg	ワークの最大質量
n	min^{-1}	回転速度
P	-	加工技術者
r_{s}	m	クランピングヘッド部の重心点からチャ ック回転軸までの距離
S	_	クランプ力と分散幅の係数
μ_a	_	軸方向の摩擦係数
μ_t	_	半径方向の摩擦係数
主 9	田知の徳田4	£.17F

表 3: 用語の使用制限

次の図は、以下の計算例で使用されるクランプ力とトルク 力を表しています。

 $F_G[N] = m_w[kg] * 9.81 \left[\frac{m}{s^2} \right]$

5.2.2 制限値 1 (ワークの長さ)

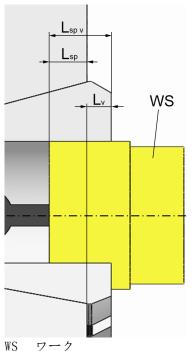
固定振れ止めやテールストックなどの補助具なしで加工で きる最大突出長さは、クランプ径の最大 6 倍です。

5.2.3 制限値 2 (ワークの質量)

ワークの最大質量は、クランピングヘッドとコレットチャ ックのサイズによって異なります(表 4を参照)。

(これらの値は個々のワークのものです。バー加工には別 の制限値が適用されます)

クランピングへ ッドとコレット -	ワークの最大質量 $m_{w max}[kg]$		
チャックのサイズ	水平方向での使用	垂直方向での使用	
26	8	12	
40	18	22	
52	28	40	
65	40	60	
80	50	75	
100	65	100	
125	80	120	


表 4: ワークの最大質量

5.2.4 限界値 3 (クランプ長さ)

クランプ長さは、必要最小限のクランプ長さ $L_{sp} \geq L_{sp\,min}$ を下回ってはなりません。

この計算において、クランピングヘッドの突出部分の長さ L_n は全く考慮しません。)

クランプ穴(ヘッドのくぼみ)が下にある場合は、クランピングヘッドに場合によって必要となるアンダーカットをクランプ長さの計算に加味するように留意してください。

クランプ長さは次のように計算します。

 $L_{sp} = L_{sp \ v} - L_v$ 一般に、 $L_{sp} \geq 0.08 * d_{sp}$ さらに、以下が適用されます。

 $L_{sp} \ge 2,8mm$ (平滑なクランプ穴ありクランピングへッドを装着した場合)

 $L_{sp} \ge 13mm$ (縦溝横溝付きクランピングヘッドを装着した場合)

最初の閉止スタッドによるクランピング ヘッドの取り付けでは、これとは異なる 仕様が適用され、より高い数値になるこ ともあります。これらの仕様については 必要に応じて製造元にお問合せください。

 $L_{sp} \ge 7mm$ (Z 溝切り付きクランピングヘッドを装着した場合)

 $L_{sp} \ge 5mm$ (F 溝切り付きクランピングヘッドを装着した場合)

既存のクランプ製図内のクランプ幅が、ハインブッフによって指定されたクランプ幅と異なり、それより狭い場合は、それぞれの場合の個別の限界値に基づいてそのクランプ幅を検証し、十分なクランプができる値として判定されました。

TOPlus mini / TOPlus premium 引込み型 用途と使用の制限

5.2.5 制限值 4 (力)

ワークに外部から印加する力は、以下の計算式で決定され ます。

その際には以下の点を判断する必要があります。

- 1. 外部からの力とトルクを受け入れるために必要なクラ ンプ力を、クランプ装置で起動できるかどうか。
- 2. 外部からの力でクランプ装置が目に見えるまたは目に 見えない損傷を受けるかどうか。

クランピングヘッドおよび最終的にクランプ装置に作用す る力とトルク力には、基本的に次の要素が関連します。

- a) 印加される加工の力とトルク力
- b) ワーク自身の質量
- c) クランピングヘッドの重量による遠心力
- d) テールストック把持力(該当する場合)

外部から作用する力に関する基本要件

警告

安全に切削するための基本要件が満たされていない 場合、重傷を負う危険があります。

安全に切削を行うためには、常に基本要件を遵 守する必要があります。

以下の基本要件を守ってください。

1基本要件

 $F_{rad} \geq F_{rad\,erf}$

かつ

2基本要件

 $F_t \leq F_{t max}$

かつ

3基本要件

 $F_c \leq F_{cmax}$

(旋盤加工や軸方向穴あけ加工の場合)

かつ

4基本要件

 $F_q \leq F_{q max}$

(半径中心部方向の穴あけ加工やそれと同等の負荷がか かる場合。半径方向の力とその結果生じるトルク力が中 心に向かわない場合は、中心以外の実際の切削力を考慮 することができます。)

かつ

5基本要件

 $M_a \leq M_{q max}$

(半径中心部方向の穴あけ加工やそれと同等の負荷がかかる場合。半径方向の力とその結果生じるトルク力が中心に向かわない場合は、中心以外の実際の切削力を考慮することができます。

これらの基本要件では、旋盤加工や軸方向または半径方向の穴あけ加工用に、ワークにクランピングへッドとコレットチャックを取り付ける場合もあります。たとえばワーク周囲のフライス加工や軸方向半径方向のフライス加工のような別の加工作業のためにクランピングへッドとコレットチャックを取り付けることも基本的に可能です。ただし、その際には事業主が、そこで生じる力とトルク力を旋盤加工や穴あけ加工の許容値と比較し、使用が可能であるかを検証する必要があります。

5.2.5.1 基本要件 1: $F_{rad} \ge F_{rad\ erf}$

必要なクランプ力の計算

次の式により、回転速度で必要なクランプ力 $F_{rad\ erf}$ を求めます。

この式は縦旋盤加工にも面旋盤加工にも当てはまります。 ワーク前面の穴あけ加工も計算できます。重複加工や同時 加工(ターレットを使った複数ワーク加工など)も、計算 で行うことができます。それぞれの加工に必要な半径方向 のクランプ力を足せばよいのです。

ただし、軸方向の穴あけ加工と旋盤加工を同時に行うことはほとんどありません。一般に、こうした加工は回転方向が反対になるため、同時に作業できないからです。

計算では最大の力がかかる点、つまり、加工で一番負荷がかかる時点を基本にして計算します。それが不明な場合は、一番大きな負荷がかかる点を割り出すために、複数の切削操作状況を確認する必要があります。

半径方向の穴あけ作業では、必要な半径方向のクランプ力 $F_{rad\;erf}$ を求めるほか、特に作業開始時の横せん断力 F_q と、その結果生じるトルク力 M_q が重要になります。

クランプ力の分散幅

クランプ力分散幅係数 S は、次の表を参照してください。これらの分散幅係数の値は、使用説明書に従って定期的にメンテナンスを行い、潤滑を施して製品を使用した場合にのみ有効です。

毎回の試運転前および連続 100 時間のチャッキングごとに、 適切な測定機器により半径方向のクランプ力を測定してい る限り、計算によって求められた「検証済みの」低いクラ ンプ力分散幅係数を使用して加工できます。

クランピング ヘッドとコレ ットチャック のサイズ	半径方向のク ランプ予備ス トローク径 (mm)	クランプ力分 散幅係数 <i>S</i>	クランプ力分 散幅の係数 <i>S</i> (検証済み)
26	0.6	2.0*	1.3
40	0.8	1.7*	1.3
52	1.0	1.7*	1.3
65	1.0	1.6*	1.3
80	1.0	1.6*	1.3
100	1.5	1.6	1.3
125	2. 5	1.6	1.3

寸法が精密なワークのため、クランピングヘッドとコレットチャ ックの半径方向の予備ストロークを限度の50%しか使用できない 場合、クランプ力分散幅係数は 0,85 に下がります (例: サイズ 52: S = 1.7 * 0.85 = 1.45)

表 5: クランプ力の分散幅

接触係数

接触係数については、接触形状や接触時に応じて次の表を 参照してください。

りも小さくなります。

フィット位置	サドル位置	隙間位置
クランピングヘッドのクラン	クランピングヘッドのクラン	クランピングヘッドのクラン
プ谷けロークのクランプ谷に	プ谷けロークのクランプ谷よ	プ谷けロークのクランプ谷よ

ブ径はワークのクランプ 相当します。

プ径はワークのクランプ径よ ブ径はワークのクランブ径よ りも大きくなります。

SP SP WS WS SP WS \bigcirc \bigcirc \bigcirc

ワーク

SP クランプエレメント

表 6: 接触形状/接触時

		接触	形状
接触係数 c	加工条件	フィット 位置とサ ドル位置	隙間位置
平滑なクランピングへッ	乾式	1.1	1.0
F	湿式*/MQL**	1.3	1.2
縦溝横溝付きクランピン グヘッド	乾式	1.1	1.0
)	湿式*/MQL**	1.3	1.2
Z 溝切・F 溝切付きクランピングヘッド	乾式	1.0	1.0
7 C 7 7 N 9 F	湿式*/MQL**	1.2	1. 1

^{*} 湿式加工:冷却潤滑剤(略語: KSS)の使用

表 7: 接触係数

個別の切削力

素材の大まかな分類に従って基準値が決まります。これにより、実際の値に比べて部分的に大きなズレが生じることがあります。

異なるワーク材やクランプ装置の限界領域で加工作業を行う場合は、加工するワーク材の各 k_c 値の正確な値について、ワーク材サプライヤに問い合わせてください。

両刃工具による穴あけ加工では次の式を使用します。

$$f = \frac{f_n}{2}$$

ワーク材		特別切削力	特別切削力	特別切削力
名称	DIN (ISO)	$-k_c \left[\frac{N}{mm^2} \right] (f = 0, 1mm*)$	$k_c \left[\frac{N}{mm^2} \right] (f = 0,5mm**)$	$k_c \left[\frac{N}{mm^2} \right] (f = 1,0mm***)$
ねずみ鋳鉄	例: EN-GJL-250	1980	1260	900
球状黒鉛鋳鉄(生鉄)	例: EN-GJS-400-15	2120	1190	1060
構造用非合金/低合 金鋼(平均的剛性を 有するもの)/浸炭 焼き入れ鋼(生鉄)	例: S235JR [1.0037] S275JR [1.0044] Ck10 [1.1121] 16MnCr5 [1.7131] 18CrNi8[1.5920]	2920	1840	1500
構造用非合金/低合 金鋼材(生鉄、高剛 性を有するもの)	S355J2G3 [1.0570] E360 [1.0070]	3350	2000	1600

^{**} MQL: 最小量潤滑の塗布

TOPlus mini / TOPlus premium 引込み型 用途と使用の制限

ワーク材		特別切削力		特別切削力	
名称	DIN (ISO)	$\mathcal{K}_{c}\left[\frac{1}{mm^{2}}\right] (f = 0, 1mm^{*})$	$k_c \left[\frac{N}{mm^2} \right] (f = 0,5mm**)$	2.1.4.1.4	
熱処理鋼(熱処理済み)	C45 [1.0503] C60 [1.0601] 42CrMo4 [1.7225] 34CrNiMo6 [1.6582]	2850	1960	1660	
非合金/低合金工具鋼(生鉄)	C105W1 [1.1545]	3100	2100	1690	
快削鋼	35S20 [1.0726] 60S20 [1.0728]	1700	1480	1400	
ステンレス鋼		3600	2450	2100	
硬化鋼		4800			
アルミニウム合金 <16%Si		1340	900	750	
アルミニウム鋳鉄合 金〈16%Si		1520	1000	850	
真ちゅう		1300	850	700	

送りが 0.05~0.1 mm の場合は、f=0.1 mm の値に 20%を付加して 使用します。

表 8: 個別の切削力

摩擦係数の計算

鉄以外の材料のワークでは、示してある値に以下の補正値 を掛けてください。

ワーク材が硬化鋼の場合は一般に、研磨したワーク表面を 平滑なクランピングヘッドで加工する値が適用されます。

^{** 0.1~0.5}mm の送りに挿入します。

^{*** 0.5~1.0}mm の送りに挿入します。送りが 1.0mm を超える場合は、 隙間 f=1.0mm の値を使用します。

留意事項

硬化鋼をチャッキングする際に誤ったクランピング ヘッドを使用すると、物的損害が生じる可能性があ ります。

- ワーク材が硬化鋼や高剛性の($R_m > 1300 \left[\frac{N}{mm^2} \right]$)素材の場合のチャッキングは、縦溝や横溝の付いた平滑なクランピングヘッド使用時のみ可能です。
- 他の種類のクランピングへッドを使用した場合、ヘッドの破損やチャッキング不能を招いたり、軟らかいワーク材では摩擦係数が高くなったりすることがあります。

	·			
		クラン	ンプ面	
ワーク表面	SP WS	SP WS	SP WS	SP WS
	平滑なクランピ ングヘッド	縦溝横溝付きク ランピングへッ ド	Z 溝切付きクラ ンピングヘッド	F 溝切付きクラ ンピングヘッド
精密仕上げ、研磨	$\mu_t = 0.06$ $\mu_a = 0.08$	$\mu_t = 0.07$ $\mu_a = 0.09$	$\mu_t = 0.15$ $\mu_a = 0.20$	$\mu_t = 0.17$ $\mu_a = 0.22$
研磨仕上げ	$\mu_t = 0.10$ $\mu_a = 0.13$	$\mu_t = 0.11$ $\mu_a = 0.15$	$\mu_t = 0.18$ $\mu_a = 0.25$	$\mu_t = 0.23$ $\mu_a = 0.28$
未加工の生素材	$\mu_t = 0.14$ $\mu_a = 0.16$	$\mu_t = 0.16$ $\mu_a = 0.18$	$\mu_t = 0.20$ $\mu_a = 0.28$	$\mu_t = 0.25$ $\mu_a = 0.30$
		アルミニウム合金	= 0.97	
素材の補正値		真ちゅう	= 0.92	
		ねずみ鋳鉄	= 0.80	
	WC D-A			

WS ワーク

SP クランプエレメント

表 9: 鋼材ワークの摩擦係数

クランピングヘッド重量 m[kg] および回転軸とクランピ ングヘッド部重心との距離 $/ [m] r_s[m]$

クランピング ヘ ッド のサイズ	最小位置での重心の 距離 $r_s[m]$	クランピングへ ッドの <u>重量</u> <i>m[kg</i>]
26	0.013	0.23
40	0.018	0.70
52	0.022	1.00
65	0.026	1.65
80	0.032	2.10
100	0.040	4.30
125	0.062	8.00

クランピングヘッド重量 および回転軸とクランピングへ ッド部重心との距離 / [m]

必要なクランプ力の計算

情報

S 参照: 表 5

参照: 表 7

k_c 参照: 表 8

 μ_a, μ_t 参照: 表 9

r_s, m 参照: 表 10

Ι

$$F_{rad\ erf} = S*c*\left(1.6*(F_{sz}+F_{sk})+F_{fz}\right)$$

情報 ñ

係数 1.6 の算定においては、発生する可能性のある 動力伝達の変動を考慮しています。

II

$$F_{SZ} = 1.3 * \sqrt{\left(\frac{F_c * d_z + 2 * M_B}{d_{SP} * \mu_t}\right)^2 + \left(\frac{F_c + F_B}{\mu_a}\right)^2}$$

旋盤加工(内径加工と外径加工)

$$F_c = 1.3 * a_p * f * k_c$$

穴あけ加工(ドリル加工、両刃工具、ワーク軸 方向の同心加工)

$$F_B = 0.45 * D_B * f_n * k_c$$

$$M_B = \frac{f_n * D_B^2 * k_c}{5700}$$

育情報

切削力の計算には 0.3mm 幅の摩耗に相当する 鈍化率が考慮されます。

III

$$F_{sk} = \frac{\left(0.27*\frac{L_Z}{d_{sp}} + 0.63\right)*\sqrt{\left(F_c*L_Z + F_G*L_g\right)^2 + \left(F_c*P\right)^2}}{0.5*\left(0.67*\left(1.9*L_{sp} - 4.5mm\right) + \mu_a*d_{sp}\right)}$$

縦旋回

 $P = \frac{d_z}{2}$

正面加工/穿孔加工

 $P = L_z$

ワークをテールストックで支持する場合は、計算した F_{sk} 値の 20% の値を適用できます。

IV

$$F_{fz} = m * r_s * \left(\frac{\pi * n}{30}\right)^2$$

行うことができません。

最初に定義した基本要件に従うと、この加工作業をこのクランプ装置で行うためには、クランピングヘッドとコレットチャックの半径方向のクランプ力が、計算した半径方向の必要クランプ力 Fraderf 相当以上なければなりません。この条件が満たされない場合、このクランピングヘッドとコレットチャックは適応できません。つまり、その加工を

同心度や端面振れが大きいワークのチャッキングや加工では、切削断面の変動が大きくなることに気を付ける必要があります。また、これにより切削力が局部的に高くなることにも留意してください。

半径方向の穴あけ加工において必要なクランプ力の計算

半径方向の穴あけ加工の場合、半径方向のクランプ力 $F_{rad\ erf}$ も同様に、この方法で求めることができます

$$F_{rad\ erf} = S * c * (1.6 * (F_{SZ} + F_{Sk}) + F_{fZ})$$

ただし、ここでコンポーネントの $F_{sz}=0$ と $F_{fz}=0$ は、 どの簡素化形(純粋な横せん断力)に導くかに基づいて設 定できます。

$$F_{rad\ erf} = S * c * 1.6 * F_{sk}$$

 F_{sk} は、クランプ装置軸半径方向に向かう穴あけ加 工の場合、式 III に似た、次のような計算で出すこ とができます。

$$F_{sk} = \frac{\left(0.27*\frac{L_z}{d_{sp}} + 0.63\right)*\left(F_q*L_z + F_G*L_g\right)}{0.5*\left(0.67*\left(1.9*L_{sp} - 4.5mm\right) + \mu_a*d_{sp}\right)}$$

 F_a の計算については、「基本要件 4: $F_a \leq F_{a max}$ 」 の章を参照してください。

$$F_q = F_B = 0.45 * D_B * f_n * k_c$$

5.2.5.2 基本要件 2: $F_t \leq F_{t max}$

テールストックを使用する場合は、クランピングヘッドと コレットチャックに対する追加膨張力に基づき、テールス トックの最大許容把持力には、クランピングヘッドとコレ ットチャックのサイズに応じて以下の制限値が適用されま す。

クランピングヘッドとコレッ トチャックのサイズ	$F_{tmax}[kN]$
26	2
40	4
52	6
65	8
80	8
100	8
125	8

表 11: テールストックの最大許容把持力

留意事項

不適切な加工力で作業すると、コレットチャックや工作機械に重大な損傷を与える可能性があります。

■ 設定されたテールストック把持力とクランプ操作時の軸方向クランプ力の合計が、クランプ解除力以下である必要があります。

テールストックを使用する場合は、クランピングヘッドと コレットチャックにエンドストップを使用して、ワークが 軸方向に動かないようにします。

5.2.5.3 基本要件 3: $F_c \leq F_{c max}$

基本的にチャッキングの滑りやズレなく加工が可能であっても、特にワークの突出部の長さが短い場合など、旋回操作時の切削力が非常に大きくなることがあります。したがって、クランピングヘッドとコレットチャックの損傷を防ぐためにはクランピングヘッドとコレットチャックサイズに応じてこれらを制限する必要があります。

クランピングへッド とコレットチャック のサイズ	チャック全長 <i>L</i> [mm]	$F_{c max}[N]$
26	< 120	1600
40	< 125	3200
52	< 125	3600
65	< 140	5000
80	< 140	6000
100	< 160	8000
125	< 200	12000

表 12: 最大許容切削力

サイズがより長いタイプのチャックでは、チャックの長さに応じて最大許容切削力を小さくします。例: サイズ 26 (L=150mm)

 $\frac{120mm}{150mm} * 1600N = 1280N$

5.2.5.4 基本要件 4: $F_q \leq F_{q max}$

ワーク軸半径方向の穴あけ加工では工具の送り力によって 横せん断力が発生しますが、これが最終的にクランピング ヘッドとコレットチャックに作用します。穴あけ時のこう した負荷は旋回時の切削力と同等のものと見なされ、その ため、制限する必要があります。最大許容値は次の表を参 照してください。

発生する送り力 F_{R} (穴あけ時の横せん断力)

(穴あけ加工、両刃工具、チャック軸に対して横 90°の加 工方向)

$$F_q = F_B = 0.45 * D_B * f_n * k_c$$

情報

 k_c 参照: 表 8

クランピングへッド とコレットチャック のサイズ	チャック全長 <i>L</i> [mm]	$F_{q max}[N]$
26	< 120	1800
40	< 125	3600
52	< 125	4200
65	< 140	6000
80	< 140	7200
100	< 160	9000
125	< 200	13000

表 13: 最大許容横せん断力

より長いタイプのチャックでは、チャックの長さに応じて 最大許容横せん断力を小さくします。例: サイズ 26 (L=150*mm*)

 $\frac{120mm}{150mm} * 1800N = 1440N$

5. 2. 5. 5 基本要件 5: $M_q \leq M_{q max}$

ワーク軸半径方向の穴あけ加工時には、基本要件 4 で検証した横せん断力の下で、クランピングヘッドやチャックに対して追加のトルク力 M_q が生じます。ワークがしっかりチャッキングされていたとしても、クランピングヘッドとコレットチャックが損傷しないためにはこのトルク力にもある程度の制限が必要です。最大許容値については次の表を参照してください。

横せん断力 F_a により発生するトルク力 M_a

$$M_q = F_q * L_q$$

クランピングへッド とコレットチャック のサイズ	チャック全長 <i>L</i> [mm]	$M_{q max}[Nm]$
26	< 120	90
40	< 125	180
52	< 125	210
65	< 140	300
80	< 140	360
100	< 160	450
125	< 200	650

表 14: 横せん断力に基づく最大許容トルク力

より長いタイプのチャックでは、チャックの長さに応じて最大許容横トルク力を小さくします。例: サイズ 26 (L=150mm)

 $\frac{120mm}{150mm} * 90Nm = 72Nm$

5.2.6 計算例

具体例

水平位置で旋回する 16MnCr5(未加工時クランプ径)の下 がったシャフトの縦旋回。

ワークのデータ

- クランプ径 $d_{sp} = 60mm$
- ワーク長さ $L_w = 150mm$ [穴径 151.5mm]
- 旋回加工の切削径 $d_z = 57.0mm$
- ワークの重量 $m_w = 3.3kg$ $\rightarrow F_G = m_W * 9.81 \frac{m}{s^2}$ $\rightarrow F_G = 33N$

加工データ

- 回転速度 $n = 800min^{-1}$
- 送り f = 0.25mm
- 切削深さ $a_p = 1.5mm$
- 冷却潤滑剤を使用
- 合計クランプ幅 $L_{spv} = 20mm$

クランピングヘッドとコレットチャック

- TOPlus 引込み型コレットチャック サイズ 65
- 使用クランピングヘッド
 - 平面用
 - クランピングヘッドのクランプ径 D=60mm
 - 突出部分の長さ $L_n = 3mm$

詳細

「ワークの最大突出長さはクランプ径の 6 倍相当」という 要件1は満たされています。

「クランピングヘッドとコレットチャックのサイズが65の 場合のワークの質量は m_w 40kg 以下」という要件 2 は満 たされています。

「ワークの最小クランプ長は $0.08*d_{sp}=0.08*60mm=$ 4.8mm 以上」という要件3も、クランプ長が $L_{sp} = L_{spv}$ - $L_v = 20mm - 3mm = 17mm$ 以上であったことから満たさ れています。

要件4の充足を確認するには、まず基本要件1に従って半 径方向の必要クランプ力を求める必要があります。

ñ 情報

> S 参照: 表 5

> С 参照:表 7

参照: 表 8 (f = 0.25mm を挿入) k_c

 μ_a, μ_t 参照: 表 9

r_s, m 参照: 表 10

 $F_{rad\ erf} = S * c * (1.6 * (F_{SZ} + F_{Sk}) + F_{fz})$

参照: 表 5: S = 1.6

参照:表 7: c = 1.3

 $F_{rad\ erf} = 1.6 * 1.3 * (1.6 * (F_{sz} + F_{sk}) + F_{fz})$

II

Ι

$$F_{SZ} = 1.3 * \sqrt{\left(\frac{F_c * d_z + 2 * M_B}{d_{SP} * \mu_t}\right)^2 + \left(\frac{F_c + F_B}{\mu_a}\right)^2}$$

参照: 表 9: $\mu_t = 0.14$ 、 $\mu_a = 0.16$

旋盤加工:

 $F_c = 1.3 * \alpha_p * f * k_c$

 $F_c = 1.3 * 1.5mm * 0.25mm * 2515 \frac{N}{mm^2} = 1226N$

穴あけ加工:

穴あけ加工は行わないので、ここでは関係あり ません。そのため、 $F_B=0N$ および $M_B=$ 0Nmm

$$F_{SZ} = 1.3 * \sqrt{\left(\frac{1226N * 57mm + 2*0Nmm}{60mm * 0.14}\right)^2 + \left(\frac{1226N + 0N}{0.16}\right)^2}$$

 $F_{sz} = 14703N$

 $F_{Sk} = \frac{\left(0.27*\frac{L_Z}{d_{Sp}} + 0.63\right)*\sqrt{\left(F_c*L_Z + F_G*L_g\right)^2 + \left(F_c*P\right)^2}}{0.5*\left(0.67*\left(1.9*L_{Sp} - 4.5mm\right) + \mu_a*d_{Sp}\right)}$

 $L_z = L_w = 133mm$ となり、先端部でのシャフ ト長が明らかになります。

 $L_a = 75mm$ となり、重心はワーク縦軸の中央 になります。

III

 $L_{sp} = 17mm$ で、クランプ全長からクランピン グヘッドの突出部分を引いた値に相当します。

 $P = \frac{d_z}{2} = \frac{57mm}{2} = 28.5mm$ 、は、縦旋回加工の場 合です。

$$\begin{split} F_{Sk} &= \\ & \underbrace{\left(0.27*\frac{133mm}{60mm} + 0.63\right)*\sqrt{(1226N*133mm + 33N*75mm)^2 + (1226N*28.5mm)^2}}_{0.5*(0.67*(1.9*17mm - 4.5mm) + 0.16*60mm)} \end{split}$$

$$F_{sk} = \frac{{207838Nmm}}{{14.11mm}} = 14727N$$

IV

$$F_{fz} = m * r_s * \left(\frac{\pi * n}{30}\right)^2$$

参照: 表 10m = 1.65kg、 $r_s = 0.026m$

$$F_{fz} = 1.65kg * 0.026m * \left(\frac{\pi * 800min^{-1}}{30}\right)^{2}$$

$$F_{fz} = 301N$$

$$F_{rad\ erf} = 1.6 * 1.3 * (1.6 * (F_{sz} + F_{sk}) + F_{fz})$$

$$F_{rad\ erf} = 1.6 * 1.3 * (1.6 * (14703N + 14727N) + 301N)$$

$$F_{rad\ erf} = 98569N = 99kN$$

サイズ 65 のクランピングヘッドとコレットチャックでは最 大で $F_{rad\ max} = 120kN$ の半径方向クランプ力が可能なた め、これにより基本要件1が満たされます。

基本要件 2 は、この例ではテールストックを使用せずに加 工するため、考慮しません。

さらに、基本要件 3 も、計算した切削力 $F_c=1226N$ が、 $F_{c max} = 4500N$ という上限値を大きく下回るため、満たさ れています。

基本要件4と5も、半径方向の穴あけ加工でのみ考慮する 必要があるため、この例では関係ありません。

計算例の結果

4つの限度すべてが確認されました。

軸方向のクランプ力は半径方向のクランプ力と比例してお り、クランピングヘッドとコレットチャックに関する $F_{ax max}$ と $F_{rad max}$ の値を挿入することにより計算するか、 または、クランプ力のグラフから引き出すことができます (「クランプ力のグラフ」の章を参照)。

クランピングヘッドとコレットチャックの軸方向に $F_{ax max} = 45kN$ の影響力がすべて作用した場合、ワークに は半径方向に公称 120kN が印加されます。

少なくとも $F_{ax} = 37kN$ の軸方向の影響力が必要となる、 この計算例では、半径方向のクランプ力は $F_{rad} = 99kN$ となります。

これは、条件 $F_{rad} \ge F_{rad\ erf}$ を満たします。

これにより、加工を行うことができます。

この値は限界値に近い値です。クランピングヘッドとコレ ットチャックは汚れの程度などに気を配り、良好な整備状 態におくことが必要です。

加工前に、適切なクランプ力測定器を取り付けて、半径方 向のクランプ力をチェックしてください。その際に測定さ れる値は、指定された回転速度の範囲に収まる必要があり ます(「クランプ力のグラフ」を参照)。

5.2.7 最大許容回転数

標準的なクランプヘッドよりも質量が大きいクラン プヘッドを使用すると、製品の破損による重傷を負 う可能性があります。

- 最大回転数は、標準的なクランプヘッドを使用 した場合に適用されます。
- 質量の大きいクランプヘッドを使用する場合 は、回転数を下げる必要があります。

「一般情報」の章に記載されているデータは、標準的なク ランプヘッドを使用した場合のものです。

標準的なクランプヘッドの質量を超える特殊なクランプへ ッドを使用する場合は、クランプヘッドの質量に比例して 最大許容回転数を下げる必要があります。

標準的なクランプヘッドの最大質量は、「第 4 の限界[力]」 の章に記載されています。

例えば、サイズ 65 の特殊なクランプヘッド質量の場合 m = 2.5kg

 $\frac{2.2kg}{2.512}$ * 6000 min^{-1} = 5280 min^{-1}

この特殊なクランプヘッドを使用した場合、最大許容回転 数は $5280 \, min^{-1}$ となります。

6 輸送、梱包、保管

6.1 安全な輸送、梱包、保管

不適切な運搬を行うと、製品やその部品の自重によ り、身体に大きな負荷がかかることがあります。

10 kg 以上の重量がある場合は、適切な輸送手段 や吊り上げ装置、吊り具(スリング)を使用し てください。

▲ 警告

輸送が不適切であると、部品が落下し、激しい打撲 や裂傷を負うことがあります。

- 製品が転がったり落下したりしないか、確認し てください。
- 滑り止めの付いた支持台を使用してください。
- 吊り上げ装置を使用する場合は、適切なクレー ンと吊り具(スリング)を使用してください。

▲ 警告

輸送時の重心がずれていると、重傷を負う危険があ ります。

- パッケージのマークに気を付けて下さい。
- クレーン用フックは、重心を通るようにかけて 下さい。
- 吊り上げは注意して行い、必要に応じて吊り具 取り付け位置を修正してください。

吊り上げ装置を輸送が不適切であると、重傷を負う 危険があります。

- 吊荷は絶対に人の頭上を通さないで下さい。
- 吊荷の下には決して立ち入らないで下さい。
- 指定された吊り具取り付け位置を守って下さ い。吊り具がしっかりと取り付けられているか 確認して下さい。
- 認可品の破損していない吊り上げ装置、クレー ン、吊り具のみを使用してください。
- 吊り上げ装置、クレーン、吊り具の最大揚力を 超えないようにしてください。

留意事項

輸送が不適切であると、部品が落下し、物的損害が 生じる可能性があります。

- 製品が転がったり落下したりしないか、確認してください。
- 滑り止めの付いた支持台を使用してください。
- 吊り上げ装置を使用する場合は、適切なクレーンと吊り具(スリング)を使用してください。

6.2 梱包用記号

壊れ物

パッケージの中身が壊れやすいものまたは精密なものであることを示します。

パッケージは慎重に取り扱い、倒したりぶつけたりしないようにして下さい。

濡らさない

パッケージは濡らさないようにし、乾燥した状態にして 下さい。

梱包状態ラベル

梱包品の正しい天地を示します。

6.3 輸送点検

製品が届いたら直ちに内容物が全て揃っているか、輸送中 の破損がないかを確認して下さい。

外外観上、はっきりそれと分かる輸送時の破損があった場合は次のように対応して下さい。

- 配送された製品を受け取らない、または保留しておいて下さい。
- 損傷の程度を輸送書類または輸送会社の配達受領書に 記入して下さい。
- 再請求を行って下さい。

膏 情報

欠陥などがあったら、すぐに再請求して下さい。損 害請求は、有効な再請求期間内でのみ行うことがで きます。

6.4 開梱および社内輸送

製品の総重量はサイズによって異なります。

製品やその個別部品を梱包から安全に取り出し、移動し、 工作機械や機械テーブルに置いて機械に脱着するには、重 要に応じて吊り上げ装置を使用する必要があります。

- 1. 製品には輸送用のスリットや穴が付いており、安定し た状態で梱包されます。
- 2. 固定用補助具は、こうした輸送用スリットや穴に取り 付けることができます。垂直状態に梱包されている製 品を梱包から取り出す際は、必要に応じて前側のねじ 込みインサートに固定用補助具を取り付けます。
- 3. 固定用冶具にクレーンを引っ掛けます。
- 4. 重量に応じて、安全に注意しながら吊り上げ装置で梱 包から製品を取り出し、安定した平らな支持台に載せ ます。
- 5. 製品が転がらないように固定します。
- 6. 製品を運搬車両で運ぶ際には、滑り止めの付いた支持 台に固定して輸送します。

6.5 梱包

個々のパッケージは、想定される輸送条件に合わせて梱包 されています。梱包材には環境に優しい材料が使用されて います。

梱包は、各部品が取り付けられるまで、輸送中の破損や腐 食、その他の損傷から部品を保護するものです。このため、 取り付けの直前に開梱して下さい。

ñ 情報

パッケージは緩衝材でくるまれ、段ボールに入って います。それぞれのチャックサイズの重量について は、「一般仕様」の章を参照して下さい。

梱包材は、該当する法規および、その地域の既定に従って 廃棄して下さい。

留意事項

梱包材の不適切な廃棄によって環境に悪影響を及ぼ す可能性があります。

- 梱包材は環境にやさしい方法で、適切に処分し て下さい。
- その地域の該当する廃棄物処理規定を守り、必 要に応じて廃棄物処理専門業者に処理を委託し てください。

6.6 保管

骨 情報

保管および再保管に関して、ここに挙げる条件とは 異なる注意がパッケージに記載されている場合があ ります。その場合は、当該の注意に従ってくださ い。

パッケージは次の条件下で保管して下さい。

- 安定した状態に組付けます。
- 屋外に保管しないで下さい。
- 乾燥した、埃のない場所に保管して下さい。
- 刺激性のある液剤に曝さないで下さい。
- 直射日光が当たらないようにして下さい。
- 機械的な振動のない場所に置いて下さい。
- 保管温度: 15~35°C
- 相対湿度: 60 %以下
- 3ヶ月以上の長期保管の場合は次のようにして下さい。
 - すべての部品および梱包の全体的な状態を定期的 にチェックして下さい。
 - 必要に応じて、保管作業を再調整したり、やり直 して下さい。

6.7 防錆処理

- 1. 製品を清掃し、潤滑します(「清掃」および「製品の潤滑」の章を参照)。
- 2. 製品の内側および外側表面に防錆用オイルを薄く塗ります。余分な防錆用オイルは柔らかい、糸くずの出ない布で拭き取ります。
- 3. 製品を気泡入り緩衝材で梱包します。
- 4. 製品を再保管します(「再保管」の章を参照)。

6.8 再保管

製品は次の条件下で保管して下さい。

- 1. 製品を保管します(「保管」の章を参照)。
- 2. 製品は固定して保管する必要があります。製品用のケース、滑り止めの付いた支持台を使用するか、周囲に固定枠の付いたラックを用意してください。
- 3. 保管条件については「保管」の章を参照してください。

取付け 7

7.1 取付け時の安全性

警告

無資格の作業者が装置の脱着を行うと、重傷を負う 危険があります。

装置の脱着作業は、それぞれ分野の有資格作業 員のみが行ってください。

工作機械の不測の稼働により重傷を負う危険があり ます。

- 工作機械を設定モードにします。
- すべての工具、作業用品、およびテスト装置 は、使用後すぐに機械の作業領域から取り除い てください。
- 吊り具は必ず製品から、また機械の作業領域か ら取り除いてください。

警告

高圧下での媒体の漏出により、重傷を負う危険があ ります。

- 装置の脱着時は油圧媒体の液流を閉止してくだ さい。
- 圧が残っている可能性がある場合は脱圧してく ださい。
- 装置のスイッチを切ります。

不適切な脱着によって部品が落下し、激しい打撲や 裂傷を負うことがあります。

- 製品が転がったり落下したりしないか、確認し てください。
- 機械の垂直に垂れ下がったスピンドルへの組付 けやそこからの取り外しには、必要に応じて適 切な組付け補助具を使用してください。

警告

脱着時に、予期できない機械の動きによって激しい 打撲や裂傷を負うことがあります。

- 脱着時は、設定モードでのみ機械を作動させる ことができます。
- スロットには決して手を入れないでください。
- 可動部品ではスロット寸法を守ってください。

警告

機械の作業領域に立ち入って頭に重傷を負う危険が あります。

- 機械の作業領域は、そこに切削工具や尖った物 がなく、またはそれらにカバーがかかっている 場合にのみ立ち入ることができます。
- 機械の作業慮域で部品が落下する可能性がある 場所の下に、決して頭部がくることがないよう にしてください。
- 機械の垂直に垂れ下がったスピンドルへの組付 けやそこからの取り外しには、重量に応じて適 切な組付け補助具を使用してください。

不適切な運搬を行うと、製品やその部品の自重によ り、身体に大きな負荷がかかることがあります。

10 kg 以上の重量がある場合は、適切な輸送手段 や吊り上げ装置、吊り具(スリング)を使用し てください。

鋭い換装部品やクランプエレメントによって切り傷 を負うことがあります。

換装部品とクランプエレメントの脱着は、それ ぞれの作業に関する資格を持つ専門作業員の み、行うことができます。

留意事項

製品に残っているアイボルトにより物的損害が生じ る可能性があります。

アイボルトは必ず、製品の取り付け後直ちに取 り外してください。

留意事項(アルミニウム製部品にのみ適用) アルミニウム製部品に誤った締め付けトルクでネジを締めると、物的損害が生じる可能性があります。

アルミニウム製部品のネジ締め付けトルクは、 通常よりも小さくなるのでご留意ください (「ネジの締め付けトルク」の章を参照)。

7.2 はじめに

- ネジのサイズと規格に基づいて、指定された締め付けトルクで対角方向に締め付けます(「ネジの締め付けトルク」の章を参照)。複数のネジを締め付ける際には、反りを防ぐために均一な力で締めるように気を付けてください。
- 精度誤差を防ぐために、ねじ込み面やフィット面を清掃します(「清掃」の章を参照)。チャック端面とクランプエレメント(付属している場合)の工場出荷時の湿潤は、腐食防止のためだけに行われています。機能性を維持するための潤滑ではありません。
- 潤滑剤は機械の摺動面にのみ塗布して下さい。潤滑時の注意事項に従ってください(「潤滑剤の使用」の章を参照)。
- 接触面への潤滑剤塗布が多すぎると端面振れの原因と なるため、ご注意ください。
- シール材(0リング、Xリングなど)とシール面にグリースを塗布します。グリース塗布の注意事項に従ってください(「潤滑剤の使用」の章を参照)。
- 機能面(端面、フィット面、テーパー面、シール面) が損傷しないようにして留意してください。

7.3 ネジ締め付けトルク

規定値を表に示します。

関連するガイドラインや設計基準についての知識があることを前提としています。

留意事項

誤った締め付けトルクでネジを締めると、物的損害 が生じる可能性があります。

■ 機械に製品をネジで固定する際には、ハインブッフ社ならびに機械製造元が指定した締め付けトルクの値を守る必要があります。機械製造元の規定値がハインブッフ社のものと異なる場合は、当社にご連絡ください。

ネジのサイズ

次の表は、最高許容仮締めのためのネジ締め付けトルク基準値を、各ネジのサイズについて示しています(単位 Nm)。

■ 総摩擦係数 μ_{ges} = 0,12

ネジ規格	ネジ品質ごとの締付けトルク(Nm)	
	10.9	12.9
M4	4	5
M5	7	9
M6	12	15
M8	25	38
M10	50	70
M12	100	130
M16	220	300
M20	400	550
M24	600	800

表 15: ネジ締め付けトルク

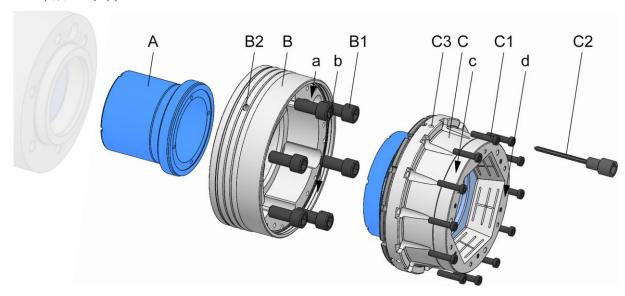
アルミニウム製部品

アルミニウム製部品の締め付けトルクは通常よりも小さくなりますが、それを以下の表に示します。

ネジ規格	締め付けトルク (Nm)	最小ねじ込み深さ (mm)
M6	10	12
M8	23	16
M10	46	20

表 16: アルミニウム製部品のネジ締め付けトルク

7.4 取付けのための機械の前準備


1. 機械を設定モードにします。

情報

ドローバーがエラーメッセージなしで動く場合に は、最小作動圧に達します。

- 2. 作動圧を最小限に下げます。
- 3. 切削工具や尖った物は作業領域から除去するか、また はそれらにカバーをかけてください。

7.5 製品の取付け

- ドローチューブアダプター Α
- スピンドルフランジ
- B1 スピンドルフランジの止めネジ
- B2 スピンドルフランジの輸送用スロット
- 機能ユニット
- C1 機能ユニットの止めネジ
- C2 刃先ガイド付きドライバービット
- C3 機能ユニットの輸送用スロット
- a スピンドルフランジ端面振れ試験面
- b スピンドルフランジ同心度試験面
- 機能ユニット同心度試験面 С
- d 機能ユニット端面振れ試験面

必要な特殊工具:

- 刃先ガイド付きドライバービット
- 1. 「取付けのための機械の前準備」の記載に従い、機械 を以下の手順で準備します。

7.5.1 互換性の確認

製品の互換性と機械の接続場所を確認しておく必要があり ます。

接続箇所と製品の嵌め合い形状が同じであるかを確認しま す。また、駆動コンポーネントやカップリングコンポーネ ントが適合しているかどうかを確認します。

機械の駆動コンポーネントと製品の間に、アダプターが必 要となる場合があります。

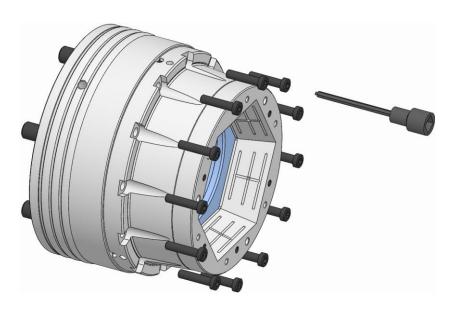
7.5.2 製品の前準備

製品は組み立てた状態で納品されます。

製品の組付けには、以下の前準備が必要です。

警告

取付けが適切に行われないと、コレットチャックの バランスが崩れ、重傷を負う危険があります。

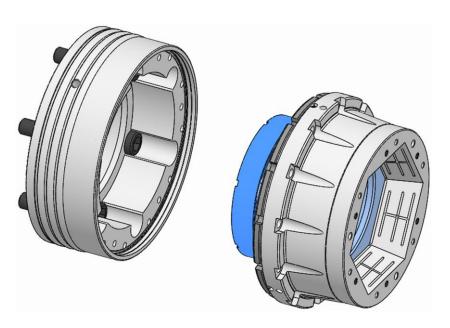

- 製品を機械に取り付ける準備の際には、スピン ドルフランジとクランプエレメントのバランス マークがあることを確認します。
- バランスマークがない場合は、製品をハインブ ッフ社にご送付いただく必要があります。

情報 ñ

ドローチューブアダプターはコレットチャックに組 み付けられている場合があります。

ドローチューブアダプターの形状によっては、機能 ユニットをスピンドルフランジから取り外すため に、ドローチューブアダプターを取り外すことが必 要になります。

1. 必要に応じて、製品からドローチューブアダプターを 回しながら取り外します。

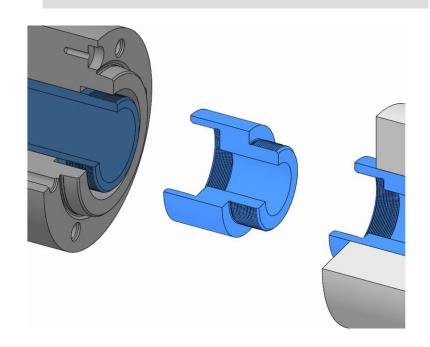

2. 機能ユニットの止めネジを刃先ガイド付きドライバー ビットで緩め、取り外します。

ñ 情報

機能ユニットを機械に取り付けるには、既存の製品 についての調整の可否が確認されている必要があり ます。

注文内容をご確認ください。コレットチャックが調 整可能な場合、注文内容にその旨が記載されていま す。

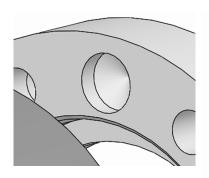
または、スピンドルフランジと機能ユニット間のイ ンターフェースに遊びがあるかどうかを確認してく ださい。遊びがある場合、スピンドルフランジと機 能ユニットはそれぞれ可動します。スピンドルフラ ンジ内で機能ユニットが動く場合、そのコレットチ ャックの方向は変更可能です。

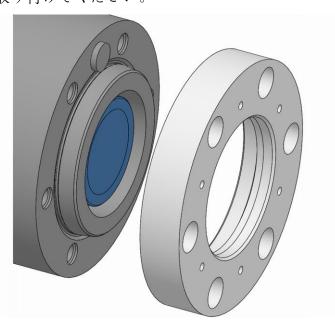


3. スピンドルフランジの機能ユニットを外します。

7.5.3 ドローチューブアダプターの取り付け

骨報

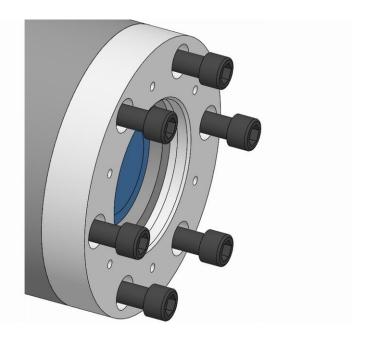

ドローチューブアダプターの形状に応じて、アダプターを機械のドローバーに、または機能ユニットに取り付ける必要があります。



1. ドローチューブアダプターはアダプターのねじ溝によって機能ユニットにねじ込むか、機械のドローバーにねじ止めして締め付けます。

7.5.4 調節できないスピンドルフランジの取付け

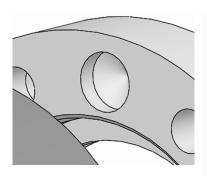
- 1. 必要となる場合に備えてアイボルトを入れます。
- 2. 垂直スピンドルの場合は、必要に応じて組付け補助具 を取り付けてください。

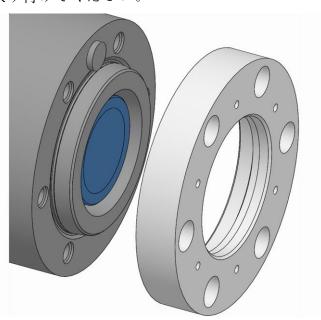


ñ 情報

必要に応じて、位置決めには機械のスピンドルの位 置決めブロックとスピンドルフランジの位置決め穴 を使用できます。

3. スピンドルフランジを機械のスピンドルに取り付けま す。その際、必要に応じてスピンドルフランジの穴を 介して機械のスピンドルに位置決めします。

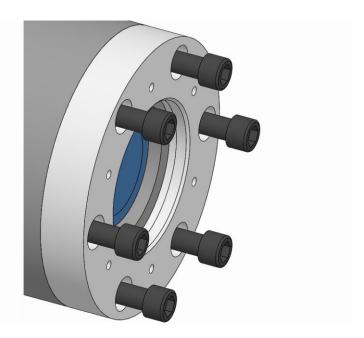

- 4. スピンドルフランジの止めネジをねじ込み、規定の締付けトルクで締めます(「ネジの締め付けトルク」の章を参照)。
- 5. 必要な場合は、使用しているアイボルトを緩め、取り外します。
- 6. 垂直スピンドルの場合は、必要に応じて、使用している組付け補助具を取り除いてください。
- 7. 試験面の端面振れとスピンドルフランジの端面振れを チェックします(望ましい値≤ 0.005 mm)。
- 8. スピンドルフランジ同心度試験面の同心度をチェックします (所期値 \leq 0.005mm)。

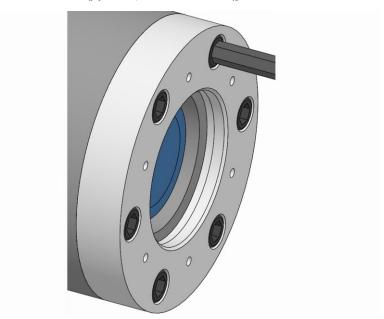

端面振れや同心度が最大許容値よりも大きい場合:

- 9. スピンドルフランジを取り外します。
- 10. 機械のスピンドルおよびスピンドルフランジの接触面およびフィット面を清掃します。
- 11. バリや軽い傷がある場合は、スピンドルフランジと機械のスピンドルの接触面をオイルストーンで軽く研ぎます。
- 12. スピンドルフランジをもう一度、取り付けます。
- 13. もう一度、端面振れをチェックします。
- 14. もう一度、同心度をチェックします。

7.5.5 調節可能なスピンドルフランジの取付け

- 1. 必要となる場合に備えてアイボルトを入れます。
- 2. 垂直スピンドルの場合は、必要に応じて組付け補助具 を取り付けてください。

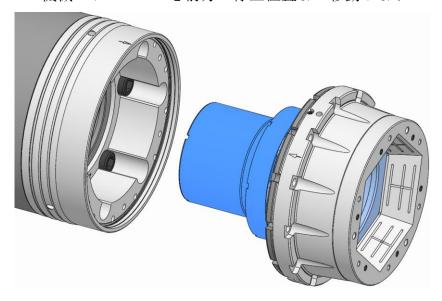



ñ 情報

必要に応じて、位置決めには機械のスピンドルの位 置決めブロックとスピンドルフランジの位置決め穴 を使用できます。

3. スピンドルフランジを機械のスピンドルに取り付けま す。その際、必要に応じてスピンドルフランジの穴を 介して機械のスピンドルに位置決めします。

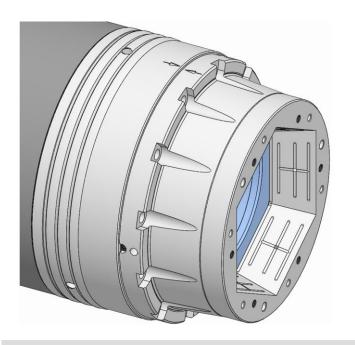
- 4. スピンドルフランジの止めネジをねじ込み、軽く固定 します。
- 5. 必要な場合は、使用しているアイボルトを緩め、取り 外します。
- 6. 垂直スピンドルの場合は、必要に応じて、使用している組付け補助具を取り除いてください。
- 7. スピンドルフランジ同心度試験面の同心度をチェック し (所期値< 0.005 mm)、必要に応じてプラスチックハンマーを使って注意しながら修正します。


- 8. スピンドルフランジの止めネジを規定の締付けトルクで締めます(「ネジの締め付けトルク」の章を参照)。
- 9. 試験面の端面振れとスピンドルフランジの端面振れを チェックします(望ましい値≤ 0.005 mm)。

端面振れが最大許容値よりも大きい場合:

- 10. スピンドルフランジを取り外します。
- 11. 機械のスピンドルおよびスピンドルフランジの接触面 およびフィット面を清掃します。
- 12. バリや軽い傷がある場合は、スピンドルフランジと機 械のスピンドルの接触面をオイルストーンで軽く研ぎ ます。
- 13. スピンドルフランジをもう一度、取り付けます。
- 14. 再度、調整を行います。
- 15. もう一度、端面振れをチェックします。

7.5.6 調整可能なコレットチャックの機能ユニットの取り付け

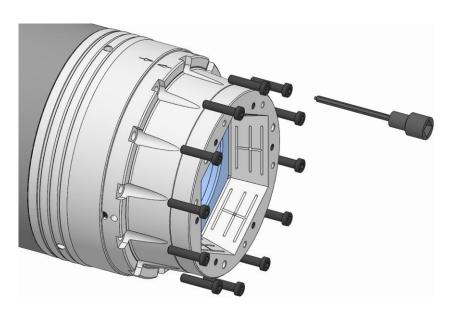

- 1. 必要となる場合に備えてアイボルトを入れます。
- 2. 垂直スピンドルの場合は、必要に応じて組付け補助具 を取り付けてください。
- 3. 機械のドローバーを前方の停止位置まで移動します。

情報 ñ

固定用補助具を使用しなければならない場合、機能 ユニットの組付けと取り外しは機械のスピンドルと 一緒にスピンドルフランジを手で回して、機能ユニ ットを着脱します。

4. 機能ユニットを機械のドローバーにいっぱいにねじ込 みます。

警告


誤った取り付けにより締め付けネジが飛散して、重 傷を負う危険があります。

- スピンドルフランジの止めネジの穴が、機能ユ ニットによって完全にふさがっていない場合 は、締め付けネジがスピンドルフランジの止め ネジの穴の間になければなりません。
- 5. スピンドルフランジの調整用マーキングと機能ユニッ トがぴったり合うまで、機能ユニットを回して戻しま す。

取り付け時に、予期できない機械の動きによって激 しい打撲や裂傷を負うことがあります。

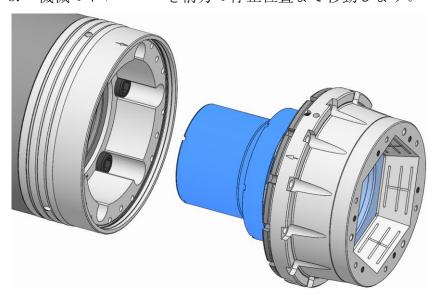
- 工作機械/スピンドルフランジと機能ユニットと の隙間には決して手を入れないでください。
- 6. 最小限の作動力と速度(「機械の前準備」の章を参照) で機械のドローバーを後方の停止位置まで移動します。

- 7. 機能ユニットの止めネジを刃先ガイド付きドライバー ビットでねじ込み、軽くはめます。
- 8. 必要な場合は、使用しているアイボルトを緩め、取り 外します。
- 9. 垂直スピンドルの場合は、必要に応じて、使用してい る組付け補助具を取り除いてください。
- 10. 機能ユニット同心度試験面の同心度をチェックし(所 期値≤ 0.01 mm)、必要に応じてプラスチックハン マーを使って注意しながら修正します。

- 11. 機能ユニットの止めネジを刃先ガイド付きドライバー ビットにより、規定の締付けトルクで締め付けます (「ネジの締め付けトルク」の章を参照)。
- 12. 機能ユニットの端面振れ試験面の端面振れをチェック します(所期値≤ 0.01 mm)。

端面振れが最大許容値よりも大きい場合:

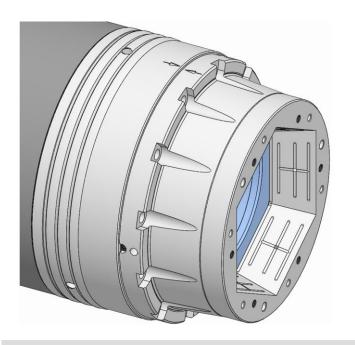
- 13. 機能ユニットを取り外します。
- 14. スピンドルフランジと機能ユニットの接触面およびフィット面を清掃します。
- 15. バリや軽い傷がある場合は、スピンドルフランジや機能ユニットの接触面をオイルストーンで軽く研ぎます。
- 16. 機能ユニットをもう一度、取り付けます。
- 17. 再度、調整を行います。
- 18. もう一度、端面振れをチェックします。


膏 情報

機能ユニットの同心度試験面で本製品を調整した場合、チャッキングしたワークの同心度の値が製品の 変形によって変わってしまうことがあります。

クランプした状態での製品の同心度を高める必要がある場合は、テスト用装置を装着して製品を調整する必要があります(「テスト装置を使用したコレットチャックの調整」の章を参照)。

7.5.7 調整できないコレットチャックの機能ユニットの取り付け

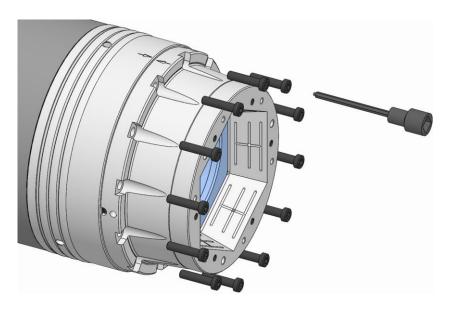

- 1. 必要となる場合に備えてアイボルトを入れます。
- 2. 垂直スピンドルの場合は、必要に応じて組付け補助具 を取り付けてください。
- 3. 機械のドローバーを前方の停止位置まで移動します。

情報 ñ

固定用補助具を使用しなければならない場合、機能 ユニットの組付けと取り外しは機械のスピンドルと 一緒にスピンドルフランジを手で回して、機能ユニ ットを着脱します。

4. 機能ユニットを機械のドローバーにいっぱいにねじ込 みます。

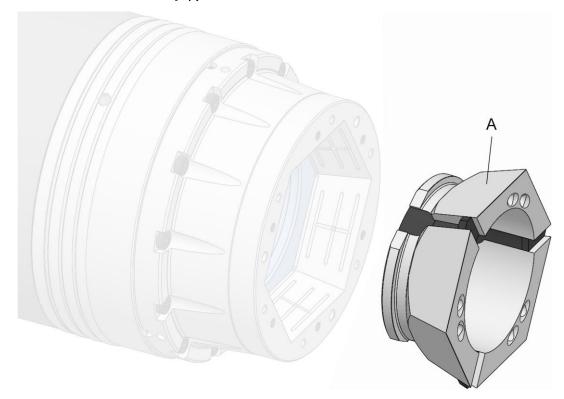
警告


誤った取り付けにより締め付けネジが飛散して、重 傷を負う危険があります。

- スピンドルフランジの止めネジの穴が、機能ユ ニットによって完全にふさがっていない場合 は、締め付けネジがスピンドルフランジの止め ネジの穴の間になければなりません。
- 5. スピンドルフランジの調整用マーキングと機能ユニッ トがぴったり合うまで、機能ユニットを回して戻しま す。

取り付け時に、予期できない機械の動きによって激 しい打撲や裂傷を負うことがあります。

- 工作機械/スピンドルフランジと機能ユニットと の隙間には決して手を入れないでください。
- 6. 最小限の作動力と速度(「機械の前準備」の章を参照) で機械のドローバーを後方の停止位置まで移動します。

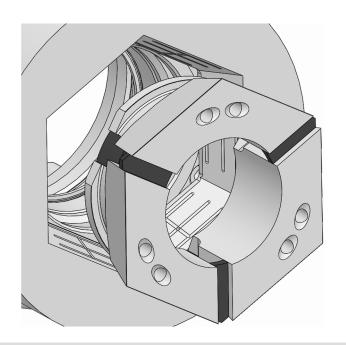


- 7. 機能ユニットの止めネジを刃先ガイド付きドライバー ビットでねじ込み、規定の締付けトルクで締めます (「ネジの締め付けトルク」の章を参照)。
- 8. 必要な場合は、使用しているアイボルトを緩め、取り 外します。
- 9. 垂直スピンドルの場合は、必要に応じて、使用してい る組付け補助具を取り除いてください。
- 10. 機能ユニットの端面振れ試験面の端面振れをチェック します(所期値≤ 0.01 mm)。
- 11. 機能ユニットの同心度試験面の同心度をチェックしま す (所期値≤ 0.01 mm)。

端面振れや同心度が最大許容値よりも大きい場合:

- 12. 機能ユニットを取り外します。
- 13. スピンドルフランジと機能ユニットの接触面およびフ ィット面を清掃します。
- 14. バリや軽い傷がある場合は、スピンドルフランジや機 能ユニットの接触面をオイルストーンで軽く研ぎます。
- 15. 機能ユニットをもう一度、取り付けます。
- 16. もう一度、端面振れをチェックします。
- 17. もう一度、同心度をチェックします。

7.6 クランプエレメントの取付け

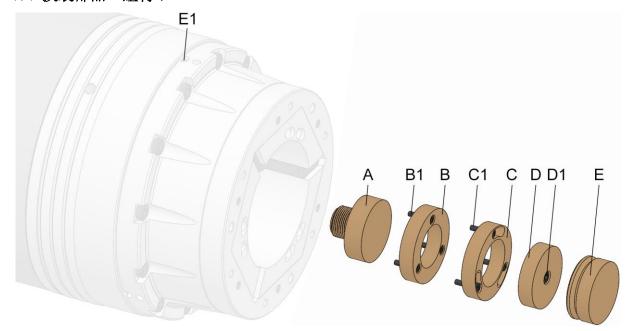

A クランピングヘッド (クランプエレメント)

情報

換装部品の取り付け後にはクランプエレメントを取り付けられない場合があるため、必要に応じてクランプエレメントは換装部品の前に取り付ける必要があります。

必要な特殊工具:

- コレット交換工具
- 1. 「取付けのための機械の前準備」の記載に従い、機械を以下の手順で準備します。
- 2. コレットチャックをアンクランプ状態にします。



警告

クランピングヘッドのカップリング部やクランピン グヘッドの隙間部分、またはコレット交換工具に手 や指を入れると、激しい打撲や裂傷を負うことがあ ります。

- 作業中は決してカップリング部やクランピング ヘッドの隙間部分、またはコレット交換工具内 に手を入れないで下さい。
- 3. クランピングヘッドは、適切なコレット交換工具を突 き合わせて製品に組み付けてください。このとき、製 品およびクランピングヘッドのクランプテーパー表面 がぴったりと合う必要があります。
- 4. コレット交換工具を緩め、取り外します。

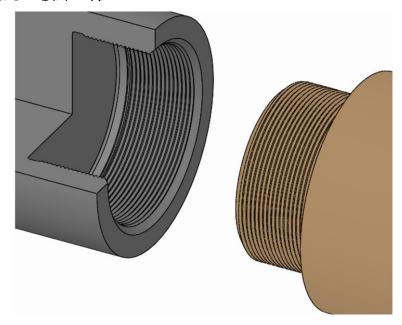
7.7 換装部品の組付け

- A 換装部品を直接締め付ける
- B 換装部品を側面から x 箇所、ネジで固定する
- B1 換装部品の止めネジを側面から x 箇所、クサビ式で固定する
- C 換装部品を側面から x 箇所、バヨネットで固定する
- C1 換装部品を側面から x 箇所、バヨネット固定するための止めネジ
- D 換装部品を中心軸で固定する
- D1 換装部品を中心軸で固定するための止めネジ
- E 換装部品を半径方向に固定する
- E1 換装部品を半径方向に固定するためのクランピングボルト

エンドストップなどの換装部品の取り付け方法には、いくつかの種類があります。

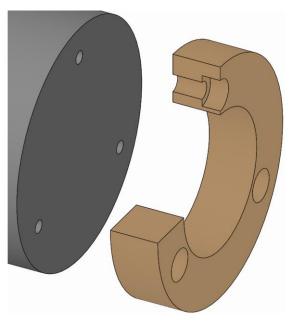
必要に応じて、本取扱説明書に加え、付属の交換部 品の取扱説明書にも目を通し、その指示に従ってく ださい。

₩ 情報

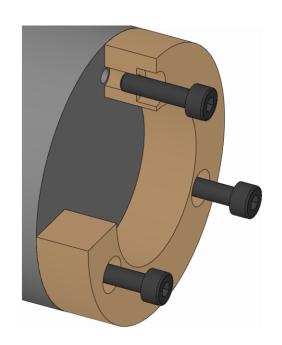

換装部品を取り付けるために、事前にクランプエレメントを取り外す必要がある場合があります。

- 1. 「取付けのための機械の前準備」の記載に従い、機械を以下の手順で準備します。
- 2. コレットチャックをアンクランプ状態にします。

情報


必要に応じて、換装部品の位置決めを行います。位置決めには、たとえばマークや円筒ピンと、穴あるいはスロットを使います。

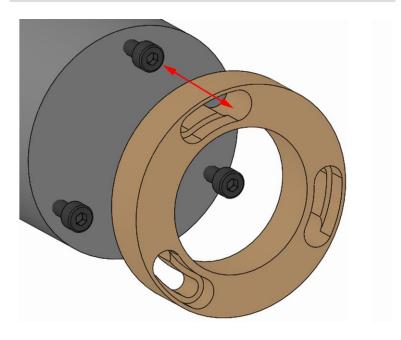
7.7.1 取付け方法: 換装部品を直接締め付ける



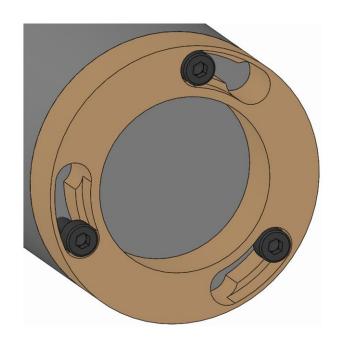
1. 換装部品のネジ溝を製品にねじ込み、締め付けます。

7.7.2 取付け方法: x 箇所で側面からクサビ式で固定する

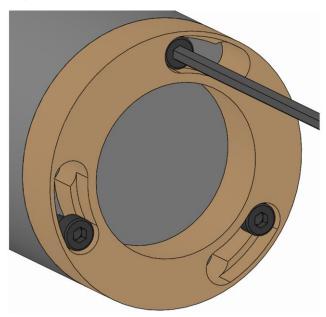
1. 換装部品を製品に載せます。



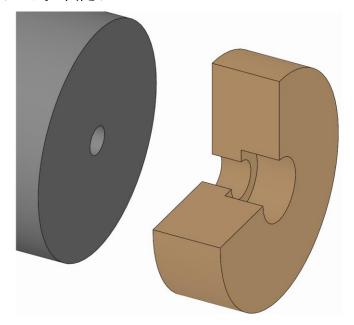
2. 換装部品の止めネジをねじ込み、規定の締付けトルクで締めます(「ネジの締め付けトルク」の章を参照)。


7.7.3 取付け方法: バヨネットで x 箇所を側面からクサビ式で固定する

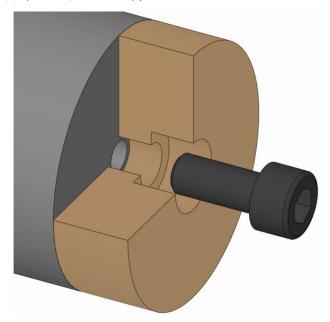
情報


バヨネットを使用して換装品を初めて取り付ける場合は、x 箇所にクサチ式で固定します(「取付け方法: x 箇所にクサビ式で固定する」の章を参照)。初回の取付け以降は、換装部品の止めネジはコレットチャック内に残しておきます。

1. 換装部品の止めネジのネジ頭がバヨネット開口部に合うように、換装部品を製品に載せます。



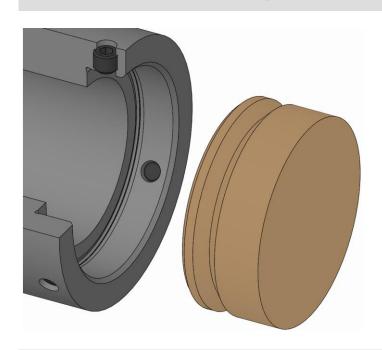
換装部品を回らなくなる位置まで回します。



3. 換装部品の止めネジを規定の締付けトルクで締めます (「ネジの締め付けトルク」の章を参照)。

7.7.4 取付け方法: 中心部にクサビ式で固定する

1. 換装部品を製品に組付けます。

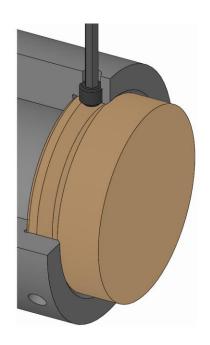


2. 換装部品の止めネジをねじ込み、規定の締付けトルクで締めます(「ネジの締め付けトルク」の章を参照)。

7.7.5 取付方法: 半径方向に固定する

情報 ñ

換装部品を製品に脱着する場合、必要に応じてハン ドルバーまたは適当な作業用品を使用できます。



ñ 情報

換装部品を組付ける際には、組み付けの方向を間違 わないように気を付けてください。正しい方向で組 付けると、換装部品の締め付けネジが換装部品の溝 に半径方向に固定されます。

ベースエンドストップを取り付ける際には、研磨さ れた面が前面にくるようにします。

1. 換装部品を製品に組付けます。

- 2. 換装部品の締め付けネジをねじ込み、規定の締付けトルクで締めます(「ネジの締め付けトルク」の章を参照)。
- 3. ハンドルバーや適当な作業用品を使用した場合はこれらを緩め、取り外します。

7.8 テスト装置を使用したコレットチャックの調整

情報

TOPlus プレミアムクランプ装置を使用する場合は、 アライメントセットを使用して以下の手順を実施 し、理想的にはクランプ装置を≤0.003mm の位置に 合わせる必要があります。

最大限の精度を得るためには、ワークに対してコレットチ ャックを調整する必要があります。そのためにテスト用装 置を使用できます。テスト用装置にはテスト用リング、テ スト用シャフト、テスト用ワーク(ワーク形状に似せたも の) などがあります。

テスト装置を用いてコレットチャックを調整するには、機 能ユニットの止めネジに自由に手が届くようになっている 必要があります。

- 「取付けのための機械の前準備」の記載に従い、機械 を以下の手順で準備します。
- テスト用装置に合ったクランプエレメントと換装部品 を取り付けます(「クランプエレメントの取付け」と 「換装部品の取付け」の章を参照)。
- 3. テスト用装置をチャッキングします。
- 4. 機能ユニットの止めネジを、ネジが外れない程度に緩 めます。
- コレットチャックを調整します(「調整可能なコレッ トチャックの機能ユニットの取り付け」の章の調整方 法を参照)。
- 6. 調整後に、機能ユニットの止めネジが所定の締め付け トルクで締められているか、確認します(「ネジの締 め付けトルク」の章を参照)。

試運転 8

起動するには、計算された許容値になるように作動圧を設 定します。

作動圧が完全に確保されて初めて工作機械を運転できます。

8.1 起動時の安全性

危険

クランプ力が低すぎると、ワークが飛散したり落下 したりして重傷を負う危険があります。

- ワークのクランプ径はクランプ直径幅を上回っ てはなりません。
- 試運転の前に、作動力を指定された許容値に設 定してください。
- ワークのクランプ力は、定義されている限度を 超えてはなりません(「仕様の制限」の章を参 照)。
- クランプ力は定期的に点検し、必要に応じて修 正してください。

警告 警告

工作機械の不測の稼働により重傷を負う危険があり ます。

試運転の前に、工作機械に用意されているすべ ての保護扉または保護カバーを閉じてくださ 061

▲ 警告

工具やテスト装置が飛び出して重傷を負う危険があ ります。

起動の前に、すべての工具とテスト装置を機械 の作業領域から取り除かれていることを確認し てください。

1 留意事項

クランプ力が低すぎると、ワークが飛散したり落下 したりして、工作機械や製品に重大な損傷を与える 可能性があります。

- ワークのクランプ径はクランプ直径幅を上回っ てはなりません。
- 試運転の前に、作動力を指定された許容値に設 定してください。
- ワークのクランプ力は、定義されている限度を 超えてはなりません(「仕様の制限」の章を参 照)。
- クランプ力は定期的に点検し、必要に応じて修 正してください。

留意事項

十分な腐食防止なく冷却潤滑剤を使用すると、部品 が損傷する危険があります。

- 鉄鋼部品は一般的な酸化処理によって防食する 必要があります。
- 冷却潤滑剤は十分な防食処理を行った場合にの み使用してください。

留意事項

不純または未調製の冷却潤滑剤により、物的損害が 生じる可能性があります。

製品が正しく機能するためには、特に、冷却潤 滑剤による内部洗浄や内部洗浄機構を備えた工 具を使用する場合には、清浄な冷却潤滑剤を用 意し、100 μm 以上の微粒子が含有されていない ことを確かめます(メッシュサイズ 100 μm のフ ィルタで処理)。

留意事項

誤った冷却潤滑剤を使用すると、シールが損傷する 可能性があります。

- 組み込まれたシール材に作用したり、シール材 を損傷する冷却潤滑剤は使用しないでくださ い。組み込むシール材の素材は、NBR、バイト ン、PUR が可能です。
- エステル系や極性のある冷却潤滑剤は使用しな いでください。

留意事項

誤った冷却潤滑剤を使用すると、クランプエレメントが損傷する可能性があります。

■ エステル系や極性のある冷却潤滑剤は使用しないでください。

8.2 全ストロークのチェック

警告

ストローク量を点検する際に、可動部品により激しい打撲や裂傷を負うことがあります。

- 機械を設定モードにします。
- 作動圧を最小限に下げます。
- 可動部分は決してつかまないで下さい。
- 可動部品ではスロット寸法を守ってください。

十分な予備ストロークとクランプ径が確保されていること を確認するには、起動する前に全ストロークを点検する必 要があります。

そのためには、前方および後方の停止位置の決まった地点までの可動部品のストローク量を測定する必要があります。 続けて、後方の停止位置の測定値を前方停止位置の測定値から引きます。結果の値は公称値以上でなければなりません。

軸方向の公称全ストローク量は、軸方向クランプ予備ストロークと軸方向リリースストロークを合算した値になる必要があります(「一般仕様」の章を参照)。

8.3 チェック

留意事項

破損した、不完全な、あるいは不適切に取り付けられた製品により、工作機械やワークが重大な損傷を 受けたり、全損したりすることがあります。

- 破損や不備のない製品のみを組み付けてください。
- 不確かな場合は、製造元にご連絡ください。

本製品の組付けや起動にあたっては、必ず次の点を確認してください。

- 使用製品は非損傷品です。
- 製品のすべての止めネジが使用されており、正しい締め付けトルクで締められている。

- クランプエレメントと組み込み部品に使用されている すべてのラバー部分にひび割れや穴のあいている所が あってはなりません。
- 摩擦係数に達しないほど、溝切りおよび溝形状がなめ ていないこと。
- すべての隙間および溝に裂け目や摩耗の様子が見られ ない。
- 設定された工作回転速度は、本製品の許容回転速度の 上限を超えてはいけません。組み合わせた製品につい て記載された最大回転速度のうち、必ず、最も低い回 転速度を使用して下さい。
- ワークを十分なクランプ力でチャッキングするには、 決められた作動力を守る必要があります。
- 製品に表示されている最大作動力を超えてはなりませ h 組み合わせた製品について記載された最大作動力のう ち、必ず、最も低い値に従ってください。
- すべての取付工具が作業領域から取り除かれているこ
- コレットチャックとワーククランプ径が合っているか を定期的にチェックします。
- クランプ力を測定します。

8.4 ワーク

十分なクランプ力でワークがチャッキングされてい ない場合、ワーク飛散により重傷を負う危険があり ます。

- クランプ予備ストロークを完全に使い切らない ようにしてください。
- 許容される最大予備ストローク量を超えてはな りません。
- 残っている予備ストロークは、使用するワーク 材に応じて、またそれが変形する場合に備えて 調節する必要があります。

警告

ワークを適切に載せないと、手や指に裂傷を負うこ とがあります。

- ワークとコレットチャックの間に手や指を入れ ないでください。
- また、クランプ範囲には決して手を入れないで ください。

注意

ワークが高温であることによる火災の危険がありま す。

- 自動積載が優先されます。
- 基本の装備に加えて、次の安全装備を着用して ください。

8.5 衝突後の取り扱い

何らかの衝突が発生した場合は、使用を再開する前に、製 品およびその個々の部品にひび割れや損傷がないか、点検 する必要があります。

そのためには、本製品を機械から取り外し(「製品の取り 外し」の章を参照)、分解します(分解手順については、 「清掃」の章を参照)。

9 加工完了後の作業

- 1. 製品をアンクランプポジションに移動します。
- 2. 工作機械の電源を切り、電源再投入のないことを確認 します。
- 3. 保護扉または保護カバーを開けます。

警告

清掃時に保護服を着用しないと、目を傷つけたり切 り傷を負ったりすることがあります。

- 製品は決して圧縮エアーで清掃しないでくださ
- 基本の装備に加えて、次の安全装備を着用して ください。

- 4. 製品に付いている切削屑と加工の残渣を、柔らかい、 糸くずの出ない布で拭き取り、軽く潤滑します。
- 5. 保護扉または保護カバーを閉めます。

10取り外し

生産ラインの停止期間が 3 日を上回る場合は、コレットチ ャックを取り外し、製造元の指定に従って正しく保管する 必要があります(「輸送、梱包、保管」の章を参照)。

10.1 取り外し時の安全性

警告

無資格の作業者が装置の脱着を行うと、重傷を負う 危険があります。

装置の脱着作業は、それぞれ分野の有資格作業 員のみが行ってください。

▲ 警告

工作機械の不測の稼働により重傷を負う危険があり ます。

- 工作機械を設定モードにします。
- すべての工具、作業用品、およびテスト装置 は、使用後すぐに機械の作業領域から取り除い てください。
- 吊り具は必ず製品から、また機械の作業領域か ら取り除いてください。

高圧下での媒体の漏出により、重傷を負う危険があ ります。

- 装置の脱着時は油圧媒体の液流を閉止してくだ いら
- 圧が残っている可能性がある場合は脱圧してく ださい。
- 装置のスイッチを切ります。

不適切な脱着によって部品が落下し、激しい打撲や 裂傷を負うことがあります。

- 製品が転がったり落下したりしないか、確認し てください。
- 機械の垂直に垂れ下がったスピンドルへの組付 けやそこからの取り外しには、必要に応じて適 切な組付け補助具を使用してください。

警告

脱着時に、予期できない機械の動きによって激しい 打撲や裂傷を負うことがあります。

- 脱着時は、設定モードでのみ機械を作動させる ことができます。
- スロットには決して手を入れないでください。
- 可動部品ではスロット寸法を守ってください。

警告

機械の作業領域に立ち入って頭に重傷を負う危険が あります。

- 機械の作業領域は、そこに切削工具や尖った物 がなく、またはそれらにカバーがかかっている 場合にのみ立ち入ることができます。
- 機械の作業慮域で部品が落下する可能性がある 場所の下に、決して頭部がくることがないよう にしてください。
- 機械の垂直に垂れ下がったスピンドルへの組付 けやそこからの取り外しには、重量に応じて適 切な組付け補助具を使用してください。

不適切な運搬を行うと、製品やその部品の自重によ り、身体に大きな負荷がかかることがあります。

10 kg 以上の重量がある場合は、適切な輸送手段 や吊り上げ装置、吊り具(スリング)を使用し てください。

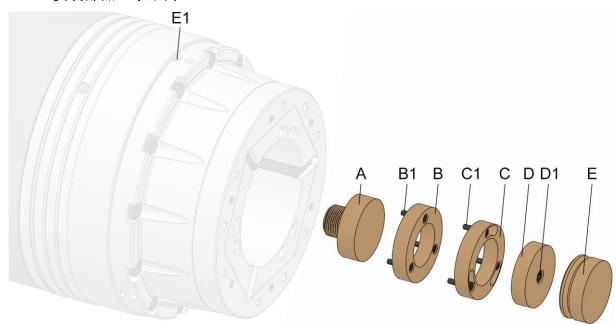
鋭い換装部品やクランプエレメントによって切り傷 を負うことがあります。

換装部品とクランプエレメントの脱着は、それ ぞれの作業に関する資格を持つ専門作業員の み、行うことができます。

情報 ñ

製品の各部品、換装部品、またはクランプエレメン トでは、必要に応じて押しネジや抜きタップを使用 してください。

10.2 取り外しのための機械の前準備


1. 機械を設定モードにします。

骨 情報

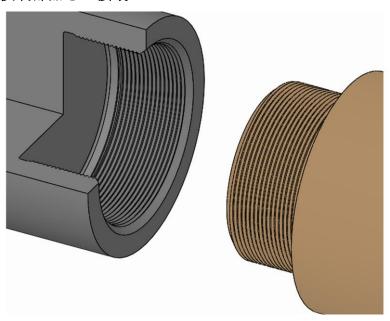
ドローバーがエラーメッセージなしで動く場合に は、最小作動圧に達します。

- 2. 作動圧を最小限に下げます。
- 3. 切削工具や尖った物は作業領域から除去するか、またはそれらにカバーをかけてください。
- 4. 燃料、添加剤、残った加工用材料を除去し、環境に適切な方法で廃棄します。

10.3 換装部品の取り外し

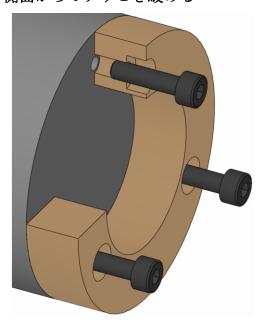
- A 換装部品を直接締め付ける
- B 換装部品を側面から x 箇所、ネジで固定する
- B1 換装部品の止めネジを側面から x 箇所、クサビ式で固定する
- C 換装部品を側面から x 箇所、バヨネットで固定する
- C1 換装部品を側面から x 箇所、バヨネット固定するための止めネジ
- D 換装部品を中心軸で固定する
- D1 換装部品を中心軸で固定するための止めネジ
- E 換装部品を半径方向に固定する
- E1 換装部品を半径方向に固定するためのクランピングボルト

換装部品の種類に応じて、以下のように取り外します。

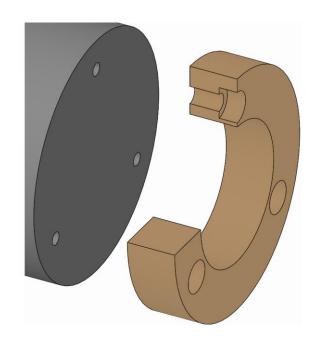

必要に応じて、本取扱説明書に加え、付属の交換部 品の取扱説明書にも目を通し、その指示に従ってく ださい。

情報 ñ

換装部品を取り外すために、事前にクランプエレメ ントを取り外す必要がある場合があります。

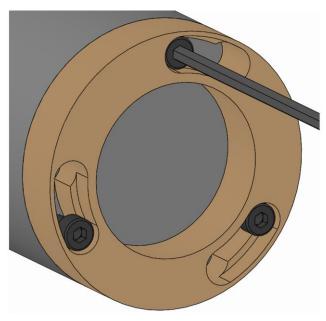

- 1. 「取り外しのための機械の前準備」の記載に従い、以 下の手順で機械を準備します。
- コレットチャックをアンクランプ状態にします。

10.3.1 取り外し方法:換装部品を直接緩める

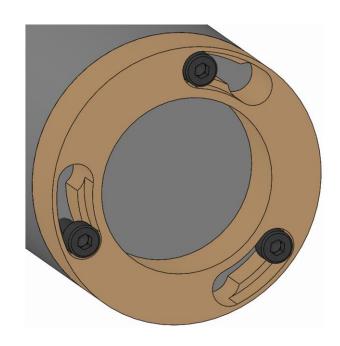


1. 換装部品はそのネジ溝を回して製品から取り外します。

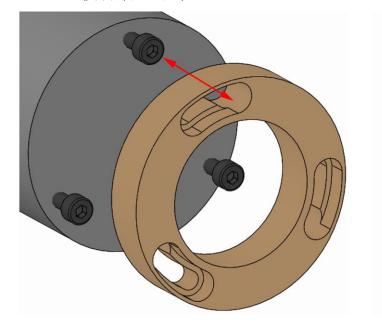
10.3.2 取り外し方法: x 箇所の側面からのクサビを緩める



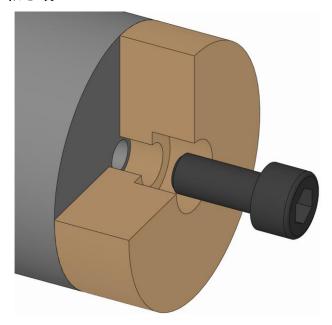
1. 換装部品の止めネジを緩め、取り外します。



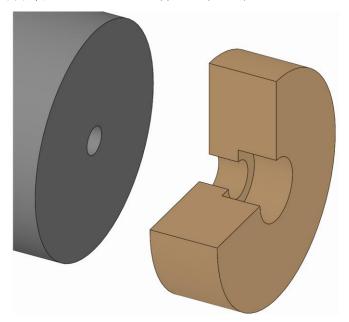
2. 交換する部品を製品から取り外します。


10.3.3 取り外し方法: x 箇所で側面から固定されたバヨネットを緩める

1. 換装部品の止めネジを回して、ネジが外れない程度に緩めます。



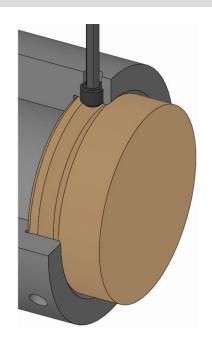
2. 換装部品の止めネジのネジ頭がバヨネット開口部に合 うように、換装部品を回転します。



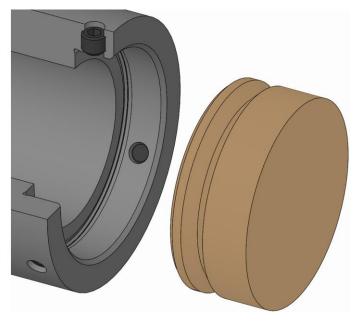
3. 交換する部品を製品から取り外します。

10.3.4 取り外し方法: 中心軸を緩める

1. 換装部品の止めネジを緩め、取り外します。

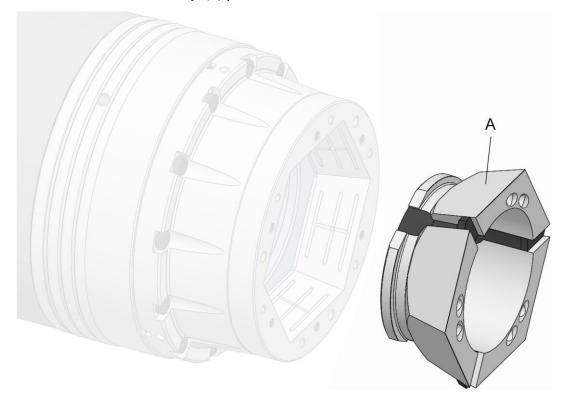


2. 換装部品を製品から取り外します。


取り付し方法: 半径方向の固定を解除する 10. 3. 5

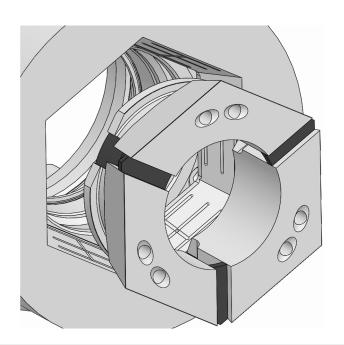
情報

換装部品を製品に脱着する場合、必要に応じてハン ドルバーまたは適当な作業用品を使用できます。



1. 換装部品を取り外せるようになるまで、換装部品の締 め付けネジを緩めます。

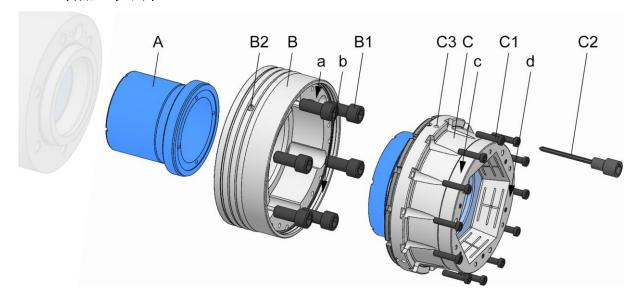
2. 換装部品を製品から取り外します。


10.4 クランプエレメントの取り外し

A クランピングヘッド (クランプエレメント)

必要な特殊工具:

- コレット交換工具
- 1. 「取り外しのための機械の前準備」の記載に従い、以下の手順で機械を準備します。
- 2. コレットチャックをアンクランプ状態にします。



クランピングヘッドのカップリング部やクランピン グヘッドの隙間部分、またはコレット交換工具に手 や指を入れると、激しい打撲や裂傷を負うことがあ ります。

- 作業中は決してカップリング部やクランピング ヘッドの隙間部分、またはコレット交換工具内 に手を入れないで下さい。
- 3. クランピングヘッドは適切なコレット交換工具により 製品から取り外します。

10.5 製品の取り外し

- A ドローチューブアダプター
- B スピンドルフランジ
- B1 スピンドルフランジの止めネジ
- B2 スピンドルフランジの輸送用スロット
- C 機能ユニット
- C1 機能ユニットの止めネジ
- C2 刃先ガイド付きドライバービット
- C3 機能ユニットの輸送用スロット
- a スピンドルフランジ端面振れ試験面
- b スピンドルフランジ同心度試験面
- c 機能ユニット同心度試験面
- d 機能ユニット端面振れ試験面

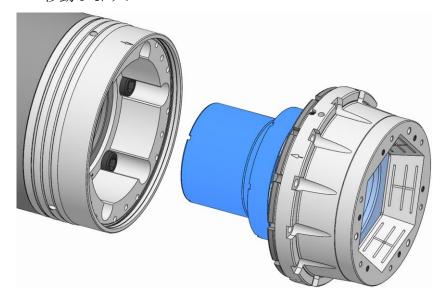
必要な特殊工具:

- 刃先ガイド付きドライバービット
- 1. 「取り外しのための機械の前準備」の記載に従い、以下の手順で機械を準備します。

10.5.1 機能ユニットの取り外し

警告

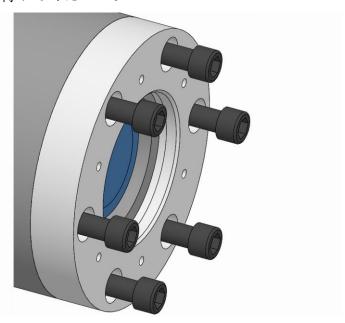
取付けが適切に行われないと、コレットチャックのバランスが崩れ、重傷を負う危険があります。


- 製品を取り外す際には、スピンドルフランジと クランプエレメントのバランスマークがあることを確認します。
- バランスマークがない場合は、製品を機械から取り外し、ハインブッフ社にご送付いただく必要があります。
- 1. 必要となる場合に備えてアイボルトを入れます。

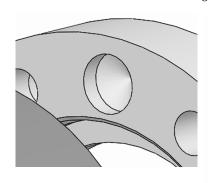
TOPlus mini / TOPlus premium 引込み型 取り外し

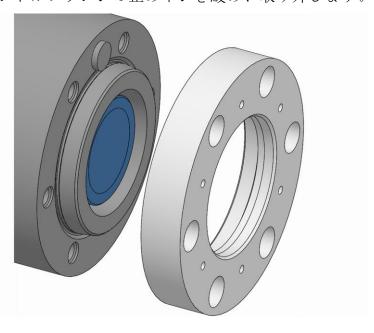
- 2. 垂直スピンドルの場合は、必要に応じて組付け補助具 を取り付けてください。
- 3. 機械のドローバーを後方の停止位置まで移動します。

- 4. 機能ユニットの止めネジを刃先ガイド付きドライバー ビットで緩め、取り外します。
- 5. 最小限の作動力と速度(「機械取り外しの前準備」の 章を参照)で機械のドローバーを前方の停止位置まで 移動します。

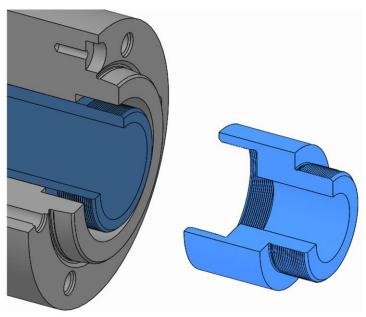

ñ 情報

固定用補助具を使用しなければならない場合、機能 ユニットの組付けと取り外しは機械のスピンドルと 一緒にスピンドルフランジを手で回して、機能ユニ ットを着脱します。


6. 機械のドローバーの機能ユニットを取り外します。


10.5.2 スピンドルフランジの取り外し

- 1. 必要となる場合に備えてアイボルトを入れます。
- 2. 垂直スピンドルの場合は、必要に応じて組付け補助具を取り付けてください。


3. スピンドルフランジの止めネジを緩め、取り外します。

4. スピンドルフランジを機械のスピンドルから取り外します。

ドローチューブアダプターの取り外し 10. 5. 3

1. 機械のドローバーにドローチューブアダプターが取り 付けられていた場合は、アダプターのネジ溝を回して、 アダプターを機械のドローバーから取り外します。

11 お手入れ

11.1 メンテナンス時の安全性

クランプ力が失われると、ワーク飛散により重傷を 負う危険があります。

- 製品のお手入れと清掃の間隔は必ず守って下さ
- 据付式のクランプ力測定によって、製品のメン テナンス状況を定期的に点検することが必要で す。

/ 注意

溶剤の不適切な取り扱いによって、健康を害する恐 れがあります。

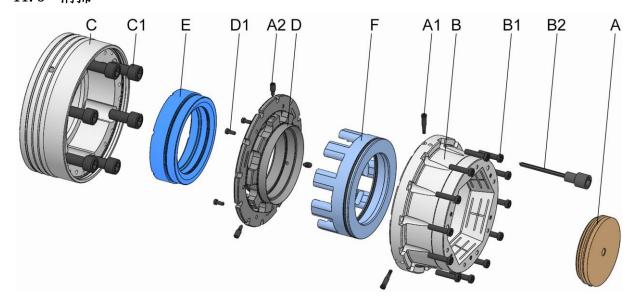
製造元の危険に関する注意事項と安全データシ ートに従ってください。

情報

製品の各部品、換装部品、またはクランプエレメン トでは、必要に応じて押しネジや抜きタップを使用 してください。

11.2 メインテナンスのスケジュール

最適で不具合のない運転のために必要となるメンテナンス については、以降の各セクションで説明しています。


定期的なチェックの際に磨耗度合いが進行していることが 分かった場合に限り、実際の摩耗状況に合わせてメンテナ ンスの間隔を短くして下さい。

メンテナンスの作業内容とその間隔についてのご質問は、 製造元にお問い合わせください(「お問い合わせ」の章を 参照)。

間隔	メンテナンスの作業内容
毎日	クランプ面とエンドストップ面に摩耗、破損、ひび割れがない か、目視点検します(「目視点検」の章を参照)
	クランプエレメントのラバー部に摩耗、破損、ひび割れがない か、目視点検します(「目視点検」の章を参照)
	汚れが激しい場合は入念に清掃を行います (「清掃」の章を参 照)
	据付式のクランプ力測定を行います

間隔	メンテナンスの作業内容
毎週または 40 時間の運転 時間ごと*	クランプエレメントを取り外しンス(「クランプエレメントの 取り外し」の章を参照)
	クランプエレメント、クランプテーパー、カップリング周りを 清掃します(「清掃」の章を参照)
	製品を潤滑します(「製品の潤滑」の章を参照)
半年に1回、または1500 時間の運転時間ごと*	製品を完全に清掃します(「清掃」の章を参照)
	製品を潤滑します(「製品の潤滑」の章を参照)
保管時	「保管」の章を参照してください。
	* いずれか先に条件が満たされた時点で実施 表 17: メンテナンス表

11.3 清掃

- A ベースエンドストップ
- 回り止めピン(ベースエンドストップ用)の作動力 A1
- A2 回り止めピン (ベースエンドストップ用)
- クランプエレメント受け部 В
- B1 クランプエレメント受け部の止めネジ
- B2 刃先ガイド付きドライバービット
- С スピンドルフランジ
- C1 スピンドルフランジの止めネジ
- D センタープレート
- D1 センタープレートの止めネジ
- E アダプター
- F カップリング

▲ 警告

清掃時に保護服を着用しないと、目を傷つけたり切 り傷を負ったりすることがあります。

- 製品は決して圧縮エアーで清掃しないでくださ
- 基本の装備に加えて、次の安全装備を着用して ください。

留意事項

誤った溶剤を使用すると、シールが損傷する可能性 があります。

- 製品の清掃には、組み込まれたシール材に作用 したり、シール材を損傷したりする溶剤を使用 しないでください。組み込むシール材の素材 は、NBR、バイトン、PUR が可能です。
- 製品の清掃にはエステル系溶剤や極性溶剤を使 用しないでください。

留意事項

誤った溶剤を使用すると、クランプエレメントが損 傷する可能性があります。

製品の清掃にはエステル系溶剤や極性溶剤を使 用しないでください。

留意事項

シール材を誤って取り付けると、物的損害が生じる 可能性があります。

- 誤ったシール材や損傷したシール材は、交換す る必要があります。
- その際には、取付けや取り外し時にシール材が 抜け落ちることがないように気を付け、必要に 応じて軽くグリースを塗布します。

同軸度と端面振れを許容値内に収める前提条件は、各部品 が接する面やガイド部に汚れがないことです。

必要な特殊工具:

刃先ガイド付きドライバービット

- 1. 換装部品とクランプエレメントを製品から取り外しま す(「換装部品の取り外し」と「クランプエレメント の取り外し」の章を参照)。
- 2. 機械から製品を取り外します(「製品の取り外し」の 章を参照)。

再度の組付けが適切に行われないと、コレットチャ ックのバランスが崩れ、重傷を負う危険がありま す。

- 製品の各部品は、同じ位置に再度組付けてくだ さい。
- 必要に応じて、製品を分解する前にそれぞれの 部品の位置に印をつけておいてください。

留意事項

製品を不適切に分解すると、物的損害が生じる可能 性があります。

- 分解組立図の指示よりも細かい分解は禁止され ています。
- 3. 分解組立図に従って製品を分解します。分解時には、 以下に注意してください。
 - アダプターとセンタープレートをクランプエレメ ント受け部から外す前に、ベースエンドストップ の回り止めピンを取り外す必要があります。
 - クランプエレメント受け部からセンタープレート を外す場合、ベースエンドストップの締め付けネ ジをストッパ位置まで回してはなりません。
- 4. すべての部品は、非エステル系の無極性溶剤と柔らか い、糸くずの出ない布でオイルとグリースを完全に拭 き取り、目に見える損傷がないか点検します。

- 5. 分解組立図に従って製品を組み付けます。組付け時に は以下に注意してください。
 - 止めネジが摩耗していたり損傷している場合は、 交換する必要があります。
 - 止めネジはすべて、所定の締め付けトルクで締め付けます(ラベルまたは「ネジの締め付けトルク」の章を参照)。複数のネジを締め付ける際には、反りを防ぐために均一な力で締めるように気を付けてください。
 - 潤滑剤は機械の摺動面にのみ塗布して下さい。潤滑時の注意事項に従ってください(「潤滑剤の使用」の章を参照)。
 - 接触面への潤滑剤塗布が多すぎると端面振れの原因となるため、ご注意ください。
 - シール材(0リング、Xリングなど)とシール面に グリースを塗布します。グリース塗布の注意事項 に従ってください(「潤滑剤の使用」の章を参 照)。
 - アダプターを既定の締め付けトルクで締め付けます(ラベルを参照)。
 - クランプエレメント受け部の外径に対してセンタープレートを調整します(所期値≤0.02mm)。
- 6. 製品を潤滑します(「製品の潤滑」の章を参照)。

11.4 目視点検

製品の損傷を早期に発見するために、製品の目視検査を毎 日実施する必要があります。

その際には、特に製品のクランプ面とエンドストップ面に ひび割れや損傷がないか、確認してください。

その際にクランプエレメントのラバーにもひび割れや損傷がないかも点検してください。

また、すべての締めネジがしっかりと締め付けられているか、点検する必要があります。

損傷が見つかった場合は、それぞれの部品をメーカー純正 のスペア部品と直ちに交換する必要があります。

汚れが激しい場合には製品を清掃する必要があります (「清掃」の章を参照)。

11.5 製品の潤滑

危険

製品の潤滑が不足するとワークが飛散し、重傷を負 う危険があります。

- クランプ力の下限値を決して下回ってはなりま せん(「クランプ力のグラフ」の章を参照)。
- メンテナンス間隔は必ず守ってください(「メ ンテナンス間隔」の章を参照)。

潤滑は毎回の清掃、メンテナンス、組付け時のほか、必要 に応じて行います。

本製品にはグリースニップルが付いています。

1. クランプエレメントをコレットチャックに取り付けま す(「クランプエレメントの取付け」の章を参照)。

潤滑に使用されるピストン型グリースガンが滑り落 ちると、激しい打撲や切り傷を負う危険がありま す。

- ピストン型グリースガンは、正しい位置で使用 するように気を付けてください。
- 2. ピストン型グリースガン(製品には同梱されていませ ん)を使用して、それ以上グリースを注入できなくな るまで、グリースニップルからグリースを塗布します。
- 3. すべての潤滑簡所について、余分のグリース、使用済 みのグリース、残っているグリースを取り除き、該当 する地域の法規制に従って廃棄します。
- 4. 潤滑後に数回、全ストロークを実施します。

11.6 潤滑剤の使用

製品を故障なく運転するためには、指定された潤滑剤を使用して下さい。

冷却溶媒の密着性、耐圧性、溶解性などの基本的な要件に 対応するグリースのみを使用してください。さらに、グリ ースに不純粒子があった場合、それが部品の接触面に付着 して端面振れ精度に悪影響を与えるため、グリースに不純 粒子が入らないようにして下さい。推奨する潤滑剤を以下 に示します。

汎用グリース GP 355

(ハインブッフの製品カタログを参照してください)

その他の推奨代替品:

潤滑剤	製造者	製品名称
	MicroGleit	GP 355
グリース	Klüber	QNB 50
	Zeller & Gmelin	DIVINOL SD24440
	Bremer & Leguill	RIVOLTA WAP

表 18: 潤滑剤の選択

留意事項

異なる種類のグリースを組み合わせると、製品が故 障することがあります。

- 異なる種類のグリースを混ぜて使用しないでく ださい。
- 別の種類のグリースを使用する前に、製品全体 を清掃してください。

グリースを塗布するために、ピストン型グリースガンを使用できます。製品に塗布するグリースを選んだら、それをピストン型グリースガンに充填します。そのために、ピストン型グリースガンの先端にはノズルが付いています。

12 廃棄処理

該当する廃棄物の回収既定や廃棄既定がない場合に限り、 破損した部品をリサイクルに送ります。

1 留意事項

環境に有害な物質の誤った廃棄により、環境に重大 な損傷を及ぼす危険があります。

複合材料(無機鋳物、フロン)が含まれている 製品は、廃棄時にハイハインブッフ社に返送し ていただく必要があります。

留意事項

環境に有害な物質の誤った廃棄により、環境に重大 な損傷を及ぼす危険があります。

潤滑剤、添加剤、燃料は危険廃棄物取扱規程に 従うものであり、認可を受けた専門の廃棄業者 のみ、廃棄することができます。

交換したオイルやグリースは適切な容器に回収し、現地の 適用法規制に従って廃棄します。

環境に適切な廃棄方法については、地域の管轄当局または 特殊廃棄物専門業者にお問い合わせ下さい。

13 不具合

次の章では各種の不具合の考えられる原因と、それらを解 決するための方法を説明します。

不具合の発生頻度が増えた場合は、実際の状態に合わせて メインテナンスの間隔を短くしてください。

次に記載された情報により解決できない不具合の場合は、 製造元にお問い合わせください(「お問い合わせ」の章を 参照)。

13.1 不具合発生時の処置

基本的に、次の対応が当てはまります。

- 1. 物的損害や人身事故につながる差し迫った危険を伴う不具合が発生した場合は、直ちに緊急停止ボタンを押します。
- 2. 機能不良の原因を突き止めます。
- 3. 危険区域でのトラブルシューティング作業が必要な場合は、工作機械を設定モードにします。
- 4. 職場の責任者に、直ちに機能不良の報告を行います。
- 5. 不具合の性質に応じて、正規の専門作業員に対応を依頼してください。

☆ 情報

次にリストしたトラブルシューティングには、不具 合に対する対処を行うべき担当者の責任区分が記載 されています。

6. 製品が原因ではない機能不良の場合は、機能不良の原因が工作機械にある可能性があります。その場合は、工作機械の取扱説明書を参照して下さい。

13.2 トラブルシューティング

不具合	考えられる原因	トラブルシューティング	対処を行う者
コレットチャック の軸ストローク不 良	パワートレイン部 品が汚れている		専門作業員
	誤ったドローチュ ーブアダプターを 使用している	製造元にお問い合わせください	製造者
	ドローバーの位置 が間違っている	ドローバーの位置を確認し、コレットチャックで調整してください	専門作業員
クランプエレメン トが交換できない		トラブルシューティング「コレッ トチャックの軸ストローク不良」 を参照	
クランプ力が小さ すぎる	ワークがクランプ 幅直径を超えてい る	適合するクランプエレメントを使 用してください	
	ドローバーの軸方 向作動力が低すぎ る	機械の設定を確認し、必要な場合 は調整してください	. 専門作業員
	エンドストップに よりストロークが 制限されている	適切なエンドストップを使用して ください	- 91311 %
	不適切な潤滑状態	クランプ装置の潤滑を確認し、必 要な場合は調整してください	
クランプ力が大き すぎる	ドローバーの軸方 向作動力が高すぎ る	機械の設定を確認し、必要な場合 は調整してください	専門作業員
ワークの位置がず れる	クランプ装置の同 心度エラー	クランプ装置の同心度を確認し、 必要な場合は調整してください	
	クランプ装置の端 面振れエラー	クランプ装置の端面振れを確認 し、必要な場合は調整してくださ い	- - 専門作業員
	エンドストップ部 が汚れている	エンドストップを取り外し、エン ドストップ面を清掃してください	41111米只
		クランプエレメントを取外し、カ ップリング部とクランプエレメン トを清掃してください	

不具合	考えられる原因	トラブルシューティング	対処を行う者
	テーパープラグが 汚れている	クランプエレメントを取り外し、 クランプテーパーを清掃してくだ さい	
	クランプエレメン トの種類が間違っ ているため、ワー クの形状が違って しまう	適合するクランプエレメントを使 用してください	_
弾性変形がある	クランプ力をクランプ装置とワー クに適用できる値に下げてくださ い	_	
	V 122/01/13	ワークの素材を確認してください。	
クランプ面に圧痕 がある	クランプ力が大き すぎる	クランプ力をクランプ装置とワー クに適用できる値に下げてくださ い	
	クランプエレメン トの種類が間違っ ている	適合するクランプエレメントを使 用してください	_
	クランプエレメン トが汚れている	クランプエレメントを清掃してく ださい	専門作業員
	クランプエレメン トが破損している	クランプエレメントを交換してく ださい	
	ワークの直径とク ランプ穴との寸法 の差が大きすぎる	クランプ径が合うクランプエレメ ントを使用してください	

表 19: トラブルシューティング

13.3 不具合が解決した後の起動

不具合が解決したら、再び稼働する前に次の手順で対処し ます。

- 1. 緊急停止をリセットします。
- 2. 工作機械の操作中断を終了します。
- 3. 危険区域に人が立ち入っていないことを確認します。
- 4. 工作機械の稼働を再開します。

14 付属書

14.1 お問い合わせ

ご注文、配送状況の確認、非常時には、以下のホットライ ンをご利用ください。

ご注文

お電話一本で迅速に対応いたします。電話:

+49 7144. 907-333

配送状況のお問い合わせ窓口

ご注文の現在の状況をお知りになりたい場合は、次の番号 にお問い合わせ下さい。

+49 7144.907-222

24 時間体制の緊急対応窓口

破損事故が発生した、または別の技術的な緊急事態が起こ った場合は

専門作業員が対応いたします。

+49 7144.907-444

ご相談やサポートについては、www.hainbuch.com に記載さ れた販売代理店およびサービススタッフにお問い合わせく ださい。

14.2 製造者証明書

製造元証明書は製品およびその説明書と共に納品されます。

索引一覧

<i>λ</i>	ドローチューンアダンダー 34
スペア部品 11	付属品:特殊工具
チ	刃先ガイド付きドライバービット 37
チェック 94	手動式コレット交換工具37
テ	空圧式コレット交換工具 37
テクニカルデータ 25	使
F	使用38
トラブルシューティング 121	使用の制限38
ネ	保
ネジの締め付けトルク	保管62
アルミニウム製部品 66	保証12
ネジのサイズ 66	全
パ	全ストロークのチェック94
バランス精度27	加
y	加工完了97
メインテナンスのスケジュール 112	危
不	
不具合 120	取
付	取り外し
付属品:オプション	クランプエレメント 106
MANDO Adapt 35	スピンドルフランジ 110
エンドストップシステム ヴァリオ	換装部品100
クイック 37	機械の前準備 100
エンドストップシステム ヴァリオ	製品108
パート36	取付け
エンドストップシステム ヴァリオ	クランプエレメント82
フレックス 36	スピンドルフランジ 71, 73
キリコ侵入防止リング 36	換装部品84
キリコ侵入防止リング付きベースエ	機械の前準備 67
ンドストップ 36	製品67
ジョーモジュール 34	製品の前準備68
フェイスドライバー アダプター 35	同
マグネットモジュール 35	··· 同梱品 ····· 11
モールステーパー アダプター 35	回
付属品: 所要	
アライメントセット 34	型
エンドストップ 34	 型式の表示32
クランピングヘッド 34	
スピンドルフランジ	

TOPlus mini / TOPlus premium 引込み型

安	構
安全	構造33
一般注意事項 13	清
輸送、梱包、保管 59	清掃113
安全性	潤
メンテナンス 112	潤滑剤24, 118
取り外し98	環
取付け 63	環境保護24
起動 92	用
安全装備	用語の定義10
ヘアネット 18	用途に従う適切な使用15
作業用衣服 18	著
保護めがね 18	著作権10
保護手袋 18	装
安全ヘルメット 18	装置の誤った使用方法16
安全靴 18	記
性	記号の説明8
性能指標26	贈
操	賠償責任の制限10
操作員の要件 14	輸
専門作業員 14	輸送: 社内61
油圧機器専門作業員 14	輸送点検60
研修生 15	運
空圧機器専門作業員 15	運転条件32
電気技術者 15	開
梱	開梱61
梱包 61	防
梱包用記号 60	防錆処理62
概	
概要説明33	

12.

HAINBUCH GMBH · WORKHOLDING TECHNOLOGY

Postfach (私書箱) 1262 · 71667 Marbach / Erdmannhäuser Straße 57 · 71672 Marbach · Germany 電話 +49 7144.907-0 · ファックス +49 7144.18826 · verkauf@hainbuch.de · www.hainbuch.com 24 時間体制の緊急対応窓口 +49 7144.907-444